Skip to main content
Top
Published in:

09-06-2024

Recovery Conditions in Weighted Sparse Phase Retrieval via Weighted \(\ell _q\, (0<q\le 1)\) Minimization

Authors: Haiye Huo, Li Xiao

Published in: Circuits, Systems, and Signal Processing | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we generalize the conditions for the exact or stable recovery of weighted k-sparse signals in weighted sparse phase retrieval in our previous work [11] from the weighted \(\ell _1\) minimization to the weighted \(\ell _q\, (0<q\le 1)\) minimization in a broad sense. Specifically, we first present that the weighted null space property (WNSP) is a sufficient and necessary condition to guarantee the exact recovery of a weighted k-sparse signal from its noiseless phaseless measurements via the weighted \(\ell _q\, (0<q\le 1)\) minimization in both the real and complex cases. In addition, we establish a general strong weighted restricted isometry property (SWRIP) condition for the stable recovery of a weighted k-sparse signal from its noisy phaseless measurements via the weighted \(\ell _q\, (0<q\le 1)\) minimization in the real case.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Appendix
Available only for authorised users
Literature
2.
go back to reference M. Cao, W. Huang, Sparse phase retrieval via \(\ell _p (0<p\le 1)\) minimization. Int. J. Wavelets Multiresolut. Inf. Process. 20(1), 2150034 (2022)CrossRef M. Cao, W. Huang, Sparse phase retrieval via \(\ell _p (0<p\le 1)\) minimization. Int. J. Wavelets Multiresolut. Inf. Process. 20(1), 2150034 (2022)CrossRef
3.
go back to reference R. Chartrand, W. Yin, Iterative reweighted algorithms for compressive sensing. Proc. International Conference on Acoustics, Speech, and Signal Processing, IEEE, Las Vegas, NV, USA, 3869–3872 (2008) R. Chartrand, W. Yin, Iterative reweighted algorithms for compressive sensing. Proc. International Conference on Acoustics, Speech, and Signal Processing, IEEE, Las Vegas, NV, USA, 3869–3872 (2008)
4.
go back to reference T. Chen, W. Sun, Linear phaseless retrieval of functions in spline spaces with arbitrary knots. IEEE Trans. Inf. Theory 68(2), 1385–1396 (2022)MathSciNetCrossRef T. Chen, W. Sun, Linear phaseless retrieval of functions in spline spaces with arbitrary knots. IEEE Trans. Inf. Theory 68(2), 1385–1396 (2022)MathSciNetCrossRef
5.
go back to reference W. Chen, Y. Li, Recovery of signals under the condition on RIC and ROC via prior support information. Appl. Comput. Harmon. Anal. 46(2), 417–430 (2019)MathSciNetCrossRef W. Chen, Y. Li, Recovery of signals under the condition on RIC and ROC via prior support information. Appl. Comput. Harmon. Anal. 46(2), 417–430 (2019)MathSciNetCrossRef
6.
go back to reference Y. Chen, C. Cheng, Q. Sun, Phase retrieval of complex and vector-valued functions. J. Funct. Anal. 283(7), 109593 (2022)MathSciNetCrossRef Y. Chen, C. Cheng, Q. Sun, Phase retrieval of complex and vector-valued functions. J. Funct. Anal. 283(7), 109593 (2022)MathSciNetCrossRef
8.
go back to reference B. Du, A. Wan, Stable and robust recovery of approximately \(k\)-sparse signals with partial support information in noise settings via weighted \(\ell _p (0<p\le 1)\) minimization. J. Comput. Math. 41(6), 1137–1170 (2023)MathSciNetCrossRef B. Du, A. Wan, Stable and robust recovery of approximately \(k\)-sparse signals with partial support information in noise settings via weighted \(\ell _p (0<p\le 1)\) minimization. J. Comput. Math. 41(6), 1137–1170 (2023)MathSciNetCrossRef
9.
go back to reference M.P. Friedlander, H. Mansour, R. Saab et al., Recovering compressively sampled signals using partial support information. IEEE Trans. Inf. Theory 58(2), 1122–1134 (2012)MathSciNetCrossRef M.P. Friedlander, H. Mansour, R. Saab et al., Recovering compressively sampled signals using partial support information. IEEE Trans. Inf. Theory 58(2), 1122–1134 (2012)MathSciNetCrossRef
10.
go back to reference B. Gao, Y. Wang, Z. Xu, Stable signal recovery from phaseless measurements. J. Fourier Anal. Appl. 22(4), 787–808 (2016)MathSciNetCrossRef B. Gao, Y. Wang, Z. Xu, Stable signal recovery from phaseless measurements. J. Fourier Anal. Appl. 22(4), 787–808 (2016)MathSciNetCrossRef
11.
go back to reference H. Huo, Stable recovery of weighted sparse signals from phaseless measurements via weighted \(\ell _1\) minimization. Math. Method. Appl. Sci. 45(9), 4929–4937 (2022)CrossRef H. Huo, Stable recovery of weighted sparse signals from phaseless measurements via weighted \(\ell _1\) minimization. Math. Method. Appl. Sci. 45(9), 4929–4937 (2022)CrossRef
12.
go back to reference H. Huo, W. Sun, L. Xiao, New conditions on stable recovery of weighted sparse signals via weighted \(\ell _1\) minimization. Circuits Syst. Sign. Proc. 37(7), 2866–2883 (2018)CrossRef H. Huo, W. Sun, L. Xiao, New conditions on stable recovery of weighted sparse signals via weighted \(\ell _1\) minimization. Circuits Syst. Sign. Proc. 37(7), 2866–2883 (2018)CrossRef
13.
go back to reference L. Jacques, A short note on compressed sensing with partially known signal support. Sign. Proc. 90(12), 3308–3312 (2010)CrossRef L. Jacques, A short note on compressed sensing with partially known signal support. Sign. Proc. 90(12), 3308–3312 (2010)CrossRef
14.
go back to reference K. Jaganathan, S. Oymak, B. Hassibi, Sparse phase retrieval: uniqueness guarantees and recovery algorithms. IEEE Trans. Signal Process. 65(9), 2402–2410 (2017)MathSciNetCrossRef K. Jaganathan, S. Oymak, B. Hassibi, Sparse phase retrieval: uniqueness guarantees and recovery algorithms. IEEE Trans. Signal Process. 65(9), 2402–2410 (2017)MathSciNetCrossRef
15.
go back to reference M. Lai, J. Wang, An unconstrained \(\ell _q\) minimization with \(0<q\le 1\) for sparse solution of underdetermined linear system. SIAM J. Optim. 21(1), 82–101 (2011)MathSciNetCrossRef M. Lai, J. Wang, An unconstrained \(\ell _q\) minimization with \(0<q\le 1\) for sparse solution of underdetermined linear system. SIAM J. Optim. 21(1), 82–101 (2011)MathSciNetCrossRef
16.
go back to reference H. Li, S. Li, Y. Xia, Sampling complexity on phase retrieval from masked Fourier measurements via Wirtinger flow. Inverse Prob. 38(10), 105004 (2022)MathSciNetCrossRef H. Li, S. Li, Y. Xia, Sampling complexity on phase retrieval from masked Fourier measurements via Wirtinger flow. Inverse Prob. 38(10), 105004 (2022)MathSciNetCrossRef
17.
go back to reference A.I. Lvovsky, M.G. Raymer, Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81(1), 299–332 (2009)CrossRef A.I. Lvovsky, M.G. Raymer, Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81(1), 299–332 (2009)CrossRef
18.
go back to reference R.P. Millane, Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)CrossRef R.P. Millane, Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)CrossRef
19.
go back to reference H. Rauhut, R. Ward, Interpolation via weighted \(\ell _1\) minimization. Appl. Comput. Harmon. Anal. 40(2), 321–351 (2016)MathSciNetCrossRef H. Rauhut, R. Ward, Interpolation via weighted \(\ell _1\) minimization. Appl. Comput. Harmon. Anal. 40(2), 321–351 (2016)MathSciNetCrossRef
20.
go back to reference Y. Shechtman, Y.C. Eldar, O. Cohen et al., Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)CrossRef Y. Shechtman, Y.C. Eldar, O. Cohen et al., Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)CrossRef
21.
go back to reference N. Vaswani, W. Lu, Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Sign. Process. 58(9), 4595–4607 (2010)MathSciNetCrossRef N. Vaswani, W. Lu, Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Sign. Process. 58(9), 4595–4607 (2010)MathSciNetCrossRef
22.
go back to reference V. Voroninski, Z. Xu, A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 386–395 (2016)MathSciNetCrossRef V. Voroninski, Z. Xu, A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 386–395 (2016)MathSciNetCrossRef
23.
24.
go back to reference Y. Xia, Z. Xu, The recovery of complex sparse signals from few phaseless measurements. Appl. Comput. Harmon. Anal. 50, 1–15 (2021)MathSciNetCrossRef Y. Xia, Z. Xu, The recovery of complex sparse signals from few phaseless measurements. Appl. Comput. Harmon. Anal. 50, 1–15 (2021)MathSciNetCrossRef
25.
go back to reference G. You, Z.-H. Huang, Y. Wang, A theoretical perspective of solving phaseless compressive sensing via its nonconvex relaxation. Inf. Sci. 415, 254–268 (2017)CrossRef G. You, Z.-H. Huang, Y. Wang, A theoretical perspective of solving phaseless compressive sensing via its nonconvex relaxation. Inf. Sci. 415, 254–268 (2017)CrossRef
26.
go back to reference Z. Zhou, J. Yu, Phaseless compressive sensing using partial support information. Optim. Lett. 14, 1961–1973 (2020)MathSciNetCrossRef Z. Zhou, J. Yu, Phaseless compressive sensing using partial support information. Optim. Lett. 14, 1961–1973 (2020)MathSciNetCrossRef
Metadata
Title
Recovery Conditions in Weighted Sparse Phase Retrieval via Weighted Minimization
Authors
Haiye Huo
Li Xiao
Publication date
09-06-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 9/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02735-w