Skip to main content
Top
Published in:

19-06-2023

Recursive Green’s functions optimized for atomistic modelling of large superlattice-based devices

Authors: V. Hung Nguyen, J. -C. Charlier

Published in: Journal of Computational Electronics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Green’s function method is recognized to be a very powerful tool for modelling quantum transport in nanoscale electronic devices. As atomistic calculations are generally expensive, numerical methods and related algorithms have been developed accordingly to optimize their computation cost. In particular, recursive techniques have been efficiently applied within the Green’s function calculation approach. Recently, with the discovery of Moiré materials, several attractive superlattices have been explored using these recursive Green’s function techniques. However, numerical difficulty issues were reported as most of these superlattices have relatively large supercells, and consequently a huge number of atoms to be considered. In this article, improvements to solve these issues are proposed in order to keep optimizing the recursive Green’s function calculations. These improvements make the electronic structure calculations feasible and efficient in modelling large superlattice-based devices. As an illustrative example, twisted bilayer graphene superlattices are computed and presented to demonstrate the efficiency of the method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Granzner, R., Polyakov, V.M., Schwierz, F., Kittler, M., Luyken, R.J., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with monte carlo results. Microelectron. Eng. 83(2), 241–246 (2006) Granzner, R., Polyakov, V.M., Schwierz, F., Kittler, M., Luyken, R.J., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with monte carlo results. Microelectron. Eng. 83(2), 241–246 (2006)
2.
go back to reference Fan, Z., Uppstu, A., Siro, T., Harju, A.: Efficient linear-scaling quantum transport calculations on graphics processing units and applications on electron transport in graphene. Comput. Phys. Commun. 185(1), 28–39 (2014)MathSciNetMATH Fan, Z., Uppstu, A., Siro, T., Harju, A.: Efficient linear-scaling quantum transport calculations on graphics processing units and applications on electron transport in graphene. Comput. Phys. Commun. 185(1), 28–39 (2014)MathSciNetMATH
3.
go back to reference Fan, Z., Garcia, J.H., Cummings, A.W., Barrios-Vargas, J.E., Panhans, M., Harju, A., Ortmann, F., Roche, S.: Linear scaling quantum transport methodologies. Phys. Rep. 903, 1–69 (2021)MathSciNetMATH Fan, Z., Garcia, J.H., Cummings, A.W., Barrios-Vargas, J.E., Panhans, M., Harju, A., Ortmann, F., Roche, S.: Linear scaling quantum transport methodologies. Phys. Rep. 903, 1–69 (2021)MathSciNetMATH
4.
go back to reference Jacoboni, C., Reggiani, L.: The monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983) Jacoboni, C., Reggiani, L.: The monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645–705 (1983)
5.
go back to reference Hong, S.-M., Jungemann, C.: A fully coupled scheme for a Boltzmann-poisson equation solver based on a spherical harmonics expansion. J. Comput. Electron. 8, 225–241 (2009) Hong, S.-M., Jungemann, C.: A fully coupled scheme for a Boltzmann-poisson equation solver based on a spherical harmonics expansion. J. Comput. Electron. 8, 225–241 (2009)
6.
go back to reference Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, Cambridge (1995) Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, Cambridge (1995)
7.
go back to reference Zhang, W., Fisher, T.S., Mingo, N.: The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007) Zhang, W., Fisher, T.S., Mingo, N.: The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007)
8.
go back to reference Mahdi, P.: The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation. Springer-Verlag, New York (2014) Mahdi, P.: The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation. Springer-Verlag, New York (2014)
9.
go back to reference Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–231 (2013) Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–231 (2013)
10.
go back to reference Niquet, Y.-M., Nguyen, V.-H., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum calculations of the carrier mobility: methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014) Niquet, Y.-M., Nguyen, V.-H., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum calculations of the carrier mobility: methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)
11.
go back to reference Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997) Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)
12.
go back to reference Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002) Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)
13.
go back to reference Li, S., Ahmed, S., Darve, E.: Fast inverse using nested dissection for NEGF. J. Comput. Electron. 6, 187–190 (2007) Li, S., Ahmed, S., Darve, E.: Fast inverse using nested dissection for NEGF. J. Comput. Electron. 6, 187–190 (2007)
14.
go back to reference Kazymyrenko, K., Waintal, X.: Knitting algorithm for calculating green functions in quantum systems. Phys. Rev. B 77, 115119 (2008) Kazymyrenko, K., Waintal, X.: Knitting algorithm for calculating green functions in quantum systems. Phys. Rev. B 77, 115119 (2008)
15.
go back to reference Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008) Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)
16.
go back to reference Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011) Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011)
17.
go back to reference Do, V.-N.: Non-equilibrium green function method: theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci: Nanosci. Nanotechnol. 5(3), 033001 (2014) Do, V.-N.: Non-equilibrium green function method: theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci: Nanosci. Nanotechnol. 5(3), 033001 (2014)
18.
go back to reference Thorgilsson, G., Viktorsson, G., Erlingsson, S.I.: Recursive Green’s function method for multi-terminal nanostructures. J. Comput. Phys. 261, 256–266 (2014)MathSciNetMATH Thorgilsson, G., Viktorsson, G., Erlingsson, S.I.: Recursive Green’s function method for multi-terminal nanostructures. J. Comput. Phys. 261, 256–266 (2014)MathSciNetMATH
19.
go back to reference Zhang, X.W., Liu, Y.L.: Electronic transport and spatial current patterns of 2d electronic system: a recursive green’s function method study. AIP Adv. 9(11), 115209 (2019) Zhang, X.W., Liu, Y.L.: Electronic transport and spatial current patterns of 2d electronic system: a recursive green’s function method study. AIP Adv. 9(11), 115209 (2019)
20.
go back to reference Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(s{p}^{3}{d}^{5}{s}^{*}\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006) Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the \(s{p}^{3}{d}^{5}{s}^{*}\) tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006)
21.
go back to reference Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18(25), 255201 (2007) Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18(25), 255201 (2007)
22.
go back to reference Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80, 155430 (2009) Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80, 155430 (2009)
23.
go back to reference Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010) Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)
24.
go back to reference Fiori, G., Iannaccone, G.: Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 101(7), 1653–1669 (2013) Fiori, G., Iannaccone, G.: Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 101(7), 1653–1669 (2013)
25.
go back to reference Alarcon, A., Nguyen, V.-H., Berrada, S., Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Pseudosaturation and negative differential conductance in graphene field-effect transistors. IEEE Trans. Electron Devices 60, 985–991 (2013) Alarcon, A., Nguyen, V.-H., Berrada, S., Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Pseudosaturation and negative differential conductance in graphene field-effect transistors. IEEE Trans. Electron Devices 60, 985–991 (2013)
26.
go back to reference Nguyen, V.H., Triozon, F., Bonnet, F.D.R., Niquet, Y.M.: Performances of strained nanowire devices: ballistic versus scattering-limited currents. IEEE Trans. Electron Devices 60, 1506–1513 (2013) Nguyen, V.H., Triozon, F., Bonnet, F.D.R., Niquet, Y.M.: Performances of strained nanowire devices: ballistic versus scattering-limited currents. IEEE Trans. Electron Devices 60, 1506–1513 (2013)
27.
go back to reference Cavassilas, N., Michelini, F., Bescond, M.: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells. Appl. Phys. Lett. 105(6), 063903 (2014) Cavassilas, N., Michelini, F., Bescond, M.: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells. Appl. Phys. Lett. 105(6), 063903 (2014)
28.
go back to reference Nguyen, V.-H., Niquet, Y.-M., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum modeling of the carrier mobility in FDSOI devices. IEEE Trans. Electron Devices 61(9), 3096–3102 (2014) Nguyen, V.-H., Niquet, Y.-M., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum modeling of the carrier mobility in FDSOI devices. IEEE Trans. Electron Devices 61(9), 3096–3102 (2014)
29.
go back to reference Cavassilas, N., Claveau, Y., Bescond, M., Michelini, F.: Quantum electronic transport in polarization-engineered GaN/InGaN/GaN tunnel junctions. Appl. Phys. Lett. 110(16), 161106 (2017) Cavassilas, N., Claveau, Y., Bescond, M., Michelini, F.: Quantum electronic transport in polarization-engineered GaN/InGaN/GaN tunnel junctions. Appl. Phys. Lett. 110(16), 161106 (2017)
30.
go back to reference Zhang, H., Guan, N., Piazza, V., Kapoor, A., Bougerol, C., Julien, F.H., Babichev, A.V., Cavassilas, N., Bescond, M., Michelini, F., Foldyna, M., Gautier, E., Durand, C., Eymery, J., Tchernycheva, M.: Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes. J. Phys. D Appl. Phys. 50(48), 484001 (2017) Zhang, H., Guan, N., Piazza, V., Kapoor, A., Bougerol, C., Julien, F.H., Babichev, A.V., Cavassilas, N., Bescond, M., Michelini, F., Foldyna, M., Gautier, E., Durand, C., Eymery, J., Tchernycheva, M.: Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes. J. Phys. D Appl. Phys. 50(48), 484001 (2017)
31.
go back to reference Choukroun, J., Pala, M., Fang, S., Kaxiras, E., Dollfus, P.: High performance tunnel field effect transistors based on in-plane transition metal dichalcogenide heterojunctions. Nanotechnology 30, 025201 (2018) Choukroun, J., Pala, M., Fang, S., Kaxiras, E., Dollfus, P.: High performance tunnel field effect transistors based on in-plane transition metal dichalcogenide heterojunctions. Nanotechnology 30, 025201 (2018)
32.
go back to reference Bescond, M., Autran, J.L., Munteanu, D., Lannoo, M.: Atomic-scale modeling of double-gate MOSFETs using a tight-binding Green’s function formalism. Solid-State Electron 48(4), 567–574 (2004) Bescond, M., Autran, J.L., Munteanu, D., Lannoo, M.: Atomic-scale modeling of double-gate MOSFETs using a tight-binding Green’s function formalism. Solid-State Electron 48(4), 567–574 (2004)
33.
go back to reference Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-d real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron Devices 54, 2213–2222 (2007) Martinez, A., Bescond, M., Barker, J.R., Svizhenko, A., Anantram, M.P., Millar, C., Asenov, A.: A self-consistent full 3-d real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron Devices 54, 2213–2222 (2007)
34.
go back to reference Groth, C.W., Wimmer, M., Akhmerov, A.R., Waintal, X.: Kwant: a software package for quantum transport. New J. Phys. 16(6), 063065 (2014) Groth, C.W., Wimmer, M., Akhmerov, A.R., Waintal, X.: Kwant: a software package for quantum transport. New J. Phys. 16(6), 063065 (2014)
35.
go back to reference Hung, N.V., Charlier, J.-C.: Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion. Phys. Rev. B 97, 235113 (2018) Hung, N.V., Charlier, J.-C.: Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion. Phys. Rev. B 97, 235113 (2018)
36.
go back to reference Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Imaging Dirac fermions flow through a circular Veselago lens. Phys. Rev. B 100, 041401 (2019) Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Imaging Dirac fermions flow through a circular Veselago lens. Phys. Rev. B 100, 041401 (2019)
37.
go back to reference Hung, N.V., Charlier, J.-C.: Aharonov-Bohm interferences in polycrystalline graphene. Nanoscale Adv. 2, 256–263 (2020) Hung, N.V., Charlier, J.-C.: Aharonov-Bohm interferences in polycrystalline graphene. Nanoscale Adv. 2, 256–263 (2020)
38.
go back to reference Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green’s function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010) Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green’s function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010)
39.
go back to reference Papior, N., Lorente, N., Frederiksen, T., García, A., Brandbyge, M.: Improvements on non-equilibrium and transport Green’s function techniques: the next-generation transiesta. Comp. Phys. Comm. 212, 8–24 (2017)MATH Papior, N., Lorente, N., Frederiksen, T., García, A., Brandbyge, M.: Improvements on non-equilibrium and transport Green’s function techniques: the next-generation transiesta. Comp. Phys. Comm. 212, 8–24 (2017)MATH
40.
go back to reference Zhang, W., Fisher, T.S., Mingo, N.: The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007) Zhang, W., Fisher, T.S., Mingo, N.: The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B Fund. 51(4), 333–349 (2007)
41.
go back to reference Lan, J., Wang, J.-S., Gan, C.K., Chin, S.K.: Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79, 115401 (2009) Lan, J., Wang, J.-S., Gan, C.K., Chin, S.K.: Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79, 115401 (2009)
42.
go back to reference Mazzamuto, F., Hung, N.V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011) Mazzamuto, F., Hung, N.V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011)
43.
go back to reference Mazzamuto, F., Saint-Martin, J., Nguyen, V.H., Chassat, C., Dollfus, P.: Thermoelectric performance of disordered and nanostructured graphene ribbons using Green’s function method. J. Comput. Electron. 11, 67–77 (2012) Mazzamuto, F., Saint-Martin, J., Nguyen, V.H., Chassat, C., Dollfus, P.: Thermoelectric performance of disordered and nanostructured graphene ribbons using Green’s function method. J. Comput. Electron. 11, 67–77 (2012)
44.
go back to reference Hung, N.V., Chung, N.M., Nguyen, H.-V., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric figure of merit in vertical graphene junctions. Appl. Phys. Lett. 105(13), 133105 (2014) Hung, N.V., Chung, N.M., Nguyen, H.-V., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric figure of merit in vertical graphene junctions. Appl. Phys. Lett. 105(13), 133105 (2014)
45.
go back to reference Wang, J.-S., Agarwalla, B.K., Li, H., Thingna, J.: Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 9, 673–679 (2014) Wang, J.-S., Agarwalla, B.K., Li, H., Thingna, J.: Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 9, 673–679 (2014)
46.
go back to reference Drouvelis, P.S., Schmelcher, P., Bastian, P.: Parallel implementation of the recursive Green’s function method. J. Comput. Phys. 215(2), 741–756 (2006)MathSciNetMATH Drouvelis, P.S., Schmelcher, P., Bastian, P.: Parallel implementation of the recursive Green’s function method. J. Comput. Phys. 215(2), 741–756 (2006)MathSciNetMATH
47.
go back to reference Avouris, P., Heinz, T.F., Low, T.: 2D Materials: Properties and Devices. Cambridge University Press, Cambridge (2017) Avouris, P., Heinz, T.F., Low, T.: 2D Materials: Properties and Devices. Cambridge University Press, Cambridge (2017)
48.
go back to reference Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015) Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015)
49.
go back to reference Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013) Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)
50.
go back to reference Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2d materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016) Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2d materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016)
51.
go back to reference He, F., Zhou, Y., Ye, Z., Cho, S.-H., Jeong, J., Meng, X., Wang, Y.: Moiré patterns in 2d materials: a review. ACS Nano 15, 5944–5958 (2021) He, F., Zhou, Y., Ye, Z., Cho, S.-H., Jeong, J., Meng, X., Wang, Y.: Moiré patterns in 2d materials: a review. ACS Nano 15, 5944–5958 (2021)
52.
go back to reference Wang, J., Mu, X., Wang, L., Sun, M.: Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019) Wang, J., Mu, X., Wang, L., Sun, M.: Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019)
53.
go back to reference Andrei, E.Y., MacDonald, A.H.: Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020) Andrei, E.Y., MacDonald, A.H.: Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020)
54.
go back to reference Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Sung, S.H., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019) Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Sung, S.H., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019)
55.
go back to reference Sunku, S.S., Ni, G.X., Jiang, B.Y., Yoo, H., Sternbach, A., McLeod, A.S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M.M., Basov, D.N.: Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018)MathSciNet Sunku, S.S., Ni, G.X., Jiang, B.Y., Yoo, H., Sternbach, A., McLeod, A.S., Stauber, T., Xiong, L., Taniguchi, T., Watanabe, K., Kim, P., Fogler, M.M., Basov, D.N.: Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018)MathSciNet
56.
go back to reference Zhao, P., Zhang, Q., Jena, D., Koswatta, S.O.: Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE Trans. Electron Devices 58(9), 3170–3178 (2011) Zhao, P., Zhang, Q., Jena, D., Koswatta, S.O.: Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE Trans. Electron Devices 58(9), 3170–3178 (2011)
57.
go back to reference Barraza-Lopez, S., Kindermann, M., Chou, M.Y.: Charge transport through graphene junctions with wetting metal leads. Nano Lett. 12(7), 3424–3430 (2012) Barraza-Lopez, S., Kindermann, M., Chou, M.Y.: Charge transport through graphene junctions with wetting metal leads. Nano Lett. 12(7), 3424–3430 (2012)
58.
go back to reference Do Nam, V., Le Anh, H.: Transport characteristics of graphene-metal interfaces. Appl. Phys. Lett. 101(16), 161605 (2012) Do Nam, V., Le Anh, H.: Transport characteristics of graphene-metal interfaces. Appl. Phys. Lett. 101(16), 161605 (2012)
59.
go back to reference Houssa, M., Iordanidou, K., Dabral, A., Augustin, L., Pourtois, G., Afanasiev, V., Stesmans, A.: Contact resistance at MoS\(_2\)-based 2d metal/semiconductor lateral heterojunctions. ACS Appl. Nano Mater. 2(2), 760–766 (2019) Houssa, M., Iordanidou, K., Dabral, A., Augustin, L., Pourtois, G., Afanasiev, V., Stesmans, A.: Contact resistance at MoS\(_2\)-based 2d metal/semiconductor lateral heterojunctions. ACS Appl. Nano Mater. 2(2), 760–766 (2019)
60.
go back to reference Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14(5), 1205 (1984) Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F: Met. Phys. 14(5), 1205 (1984)
61.
go back to reference MacKinnon, A.: The calculation of transport properties and density of states of disordered solids. Z. Phys. B 59, 385–390 (1985) MacKinnon, A.: The calculation of transport properties and density of states of disordered solids. Z. Phys. B 59, 385–390 (1985)
62.
go back to reference Umerski, A.: Closed-form solutions to surface Green’s functions. Phys. Rev. B 55, 5266–5275 (1997) Umerski, A.: Closed-form solutions to surface Green’s functions. Phys. Rev. B 55, 5266–5275 (1997)
63.
go back to reference Rivas, C., Lake, R.: Non-equilibrium green function implementation of boundary conditions for full band simulations of substrate-nanowire structures. Phys. Status Solidi (B) 239, 94–102 (2003) Rivas, C., Lake, R.: Non-equilibrium green function implementation of boundary conditions for full band simulations of substrate-nanowire structures. Phys. Status Solidi (B) 239, 94–102 (2003)
64.
go back to reference Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006) Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006)
65.
go back to reference Brück, S., Calderara, M., Bani-Hashemian, M.H., VandeVondele, J., Luisier, M.: Efficient algorithms for large-scale quantum transport calculations. J. Chem. Phys. 147, 074116 (2017) Brück, S., Calderara, M., Bani-Hashemian, M.H., VandeVondele, J., Luisier, M.: Efficient algorithms for large-scale quantum transport calculations. J. Chem. Phys. 147, 074116 (2017)
66.
go back to reference Hung, N.V., Paszko, D., Lamparski, M., Van Troeye, B., Meunier, V., Charlier, J.C.: Electronic localization in small-angle twisted bilayer graphene. 2D Mater. 8(3), 035046 (2021) Hung, N.V., Paszko, D., Lamparski, M., Van Troeye, B., Meunier, V., Charlier, J.C.: Electronic localization in small-angle twisted bilayer graphene. 2D Mater. 8(3), 035046 (2021)
67.
go back to reference Gadelha, A.C., et al.: Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021) Gadelha, A.C., et al.: Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021)
68.
go back to reference Hung, N.V., Hoang, T.X., Charlier, J.C.: Electronic properties of twisted multilayer graphene. J. Phys. Mater. 5(3), 034003 (2022) Hung, N.V., Hoang, T.X., Charlier, J.C.: Electronic properties of twisted multilayer graphene. J. Phys. Mater. 5(3), 034003 (2022)
69.
go back to reference de Trambly Laissardiére, G., Mayou, D., Magaud, L.: Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10(3), 804–808 (2010) de Trambly Laissardiére, G., Mayou, D., Magaud, L.: Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10(3), 804–808 (2010)
70.
go back to reference Hung, N.V., Dollfus, P.: Strain-induced modulation of Dirac cones and van hove singularities in a twisted graphene bilayer. 2D Mater. 2, 035005 (2015) Hung, N.V., Dollfus, P.: Strain-induced modulation of Dirac cones and van hove singularities in a twisted graphene bilayer. 2D Mater. 2, 035005 (2015)
71.
go back to reference Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. 108(30), 12233–12237 (2011) Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. 108(30), 12233–12237 (2011)
72.
go back to reference Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Axiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018) Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Axiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018)
73.
go back to reference Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., MreńcandKolasińska, A., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Optimizing Dirac fermions quasi-confinement by potential smoothness engineering. 2D Mater. 7(2), 025037 (2020) Brun, B., Moreau, N., Somanchi, S., Nguyen, V.-H., MreńcandKolasińska, A., Watanabe, K., Taniguchi, T., Charlier, J.-C., Stampfer, C., Hackens, B.: Optimizing Dirac fermions quasi-confinement by potential smoothness engineering. 2D Mater. 7(2), 025037 (2020)
74.
go back to reference Young, A.F., Kim, P.: Quantum interference and Klein Tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009) Young, A.F., Kim, P.: Quantum interference and Klein Tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009)
75.
go back to reference Rickhaus, P., Maurand, R., Liu, M.-H., Weiss, M., Richter, K., Schönenberger, C.: Ballistic interferences in suspended graphene. Nat. Commun. 4, 2342 (2013) Rickhaus, P., Maurand, R., Liu, M.-H., Weiss, M., Richter, K., Schönenberger, C.: Ballistic interferences in suspended graphene. Nat. Commun. 4, 2342 (2013)
76.
go back to reference Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000) Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)
77.
go back to reference TB-SIM code: \(www.mem-lab.fr/en/Pages/L_{-}SIM/Softwares/TB_{-}Sim.aspx\) TB-SIM code: \(www.mem-lab.fr/en/Pages/L_{-}SIM/Softwares/TB_{-}Sim.aspx\)
78.
go back to reference NanoTCAD ViDES: \(http://vides.nanotcad.com\) NanoTCAD ViDES: \(http://vides.nanotcad.com\)
79.
go back to reference Nemec, N., Cuniberti, G.: Hofstadter butterflies of bilayer graphene. Phys. Rev. B 75, 201404 (2007) Nemec, N., Cuniberti, G.: Hofstadter butterflies of bilayer graphene. Phys. Rev. B 75, 201404 (2007)
80.
go back to reference Hasegawa, Y., Kohmoto, M.: Periodic landau gauge and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 88, 125426 (2013) Hasegawa, Y., Kohmoto, M.: Periodic landau gauge and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 88, 125426 (2013)
81.
go back to reference Moon, P., Koshino, M.: Energy spectrum and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012) Moon, P., Koshino, M.: Energy spectrum and quantum hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012)
82.
go back to reference Crosse, J.A., Nakatsuji, N., Koshino, M., Moon, P.: Hofstadter butterfly and the quantum hall effect in twisted double bilayer graphene. Phys. Rev. B 102, 035421 (2020) Crosse, J.A., Nakatsuji, N., Koshino, M., Moon, P.: Hofstadter butterfly and the quantum hall effect in twisted double bilayer graphene. Phys. Rev. B 102, 035421 (2020)
83.
go back to reference QuanSheng, W., Liu, J., Guan, Y., Yazyev, O.V.: Landau levels as a probe for band topology in graphene moiré superlattices. Phys. Rev. Lett. 126, 056401 (2021) QuanSheng, W., Liu, J., Guan, Y., Yazyev, O.V.: Landau levels as a probe for band topology in graphene moiré superlattices. Phys. Rev. Lett. 126, 056401 (2021)
84.
go back to reference Yin, L.-J., Bai, K.-K., Wang, W.-X., Li, S.-Y., Yu, Z., Lin, H.: Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. 12, 127208 (2017) Yin, L.-J., Bai, K.-K., Wang, W.-X., Li, S.-Y., Yu, Z., Lin, H.: Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. 12, 127208 (2017)
85.
go back to reference Hejazi, K., Liu, C., Balents, L.: Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 035115 (2019) Hejazi, K., Liu, C., Balents, L.: Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 035115 (2019)
Metadata
Title
Recursive Green’s functions optimized for atomistic modelling of large superlattice-based devices
Authors
V. Hung Nguyen
J. -C. Charlier
Publication date
19-06-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02052-6