Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2023 | OriginalPaper | Chapter

Recyclability of Proton Exchange Membrane Electrolysers for Green Hydrogen Production

Authors : Nawshad Haque, Sarb Giddey, Sejuti Saha, Paul Sernia

Published in: New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization

Publisher: Springer Nature Switzerland

Abstract

Renewed interest in green hydrogen energy due to its versatility and ability to decarbonise numerous economic sectors prompted research on the evaluation of sustainability of associated technologies. Proton Exchange Membrane (PEM) water electrolysis is a promising technology to produce hydrogen gas from water electrolysis using renewable power. However, PEM electrolysers use rare noble metals and other expensive materials. Furthermore, the availability and supply risks are additional concerns for the critical metals. Hence, this paper explores the review of the recycling process of end-of-life PEM electrolysers from the point of collection to the final material recovery and the potential reuse in the manufacturing process. Several studies have highlighted existing and novel recycling technologies for the different materials used in electrolyser components. Some of these methods include hydrometallurgy, pyrometallurgy, transient electrochemical dissolution, selective electrochemical dissolution, and acidic process. Overview of these processes and implication of recycling are presented here.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bruce S, Temminghoff M, Hayward J, Schmidt E, Munnings C, Palfreyman D, Hartley P (2018) National hydrogen roadmap. CSIRO, Australia Bruce S, Temminghoff M, Hayward J, Schmidt E, Munnings C, Palfreyman D, Hartley P (2018) National hydrogen roadmap. CSIRO, Australia
3.
go back to reference Hughes, AE, Haque, N, Northey, SA, Giddey, S (2021) Platinum group metals: a review of resources, production and usage with a focus on catalysts. Resources 10(93) Hughes, AE, Haque, N, Northey, SA, Giddey, S (2021) Platinum group metals: a review of resources, production and usage with a focus on catalysts. Resources 10(93)
4.
go back to reference Bessarabov D, Wang H, Li H, Zhao N (2016) PEM electrolysis for hydrogen production: principles and applications. CRC Press CrossRef Bessarabov D, Wang H, Li H, Zhao N (2016) PEM electrolysis for hydrogen production: principles and applications. CRC Press CrossRef
5.
go back to reference Mergel J, Fritz DL, Carmo M (2016) Stack technology for PEM electrolysis. Hydrogen science and engineering: materials, processes, systems and technology 2016. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 331–357 CrossRef Mergel J, Fritz DL, Carmo M (2016) Stack technology for PEM electrolysis. Hydrogen science and engineering: materials, processes, systems and technology 2016. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 331–357 CrossRef
6.
go back to reference Soriano RM, Rojas N, Nieto E, de Guadalupe González-Huerta R, Sandoval-Pineda JM (2021) Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyser: bolt torques and operation mode in pre-conditioning. Int J Hydrog Energy 46(51):25944–25953 CrossRef Soriano RM, Rojas N, Nieto E, de Guadalupe González-Huerta R, Sandoval-Pineda JM (2021) Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyser: bolt torques and operation mode in pre-conditioning. Int J Hydrog Energy 46(51):25944–25953 CrossRef
7.
go back to reference Thomas, D (2019) Large-scale PEM electrolysis: technology status and upscaling strategies, Brussels Thomas, D (2019) Large-scale PEM electrolysis: technology status and upscaling strategies, Brussels
9.
go back to reference Bareiß K, de La Rua C, Möckl M, Hamacher T (2019) Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy system. Appl Energy 237:862–872 CrossRef Bareiß K, de La Rua C, Möckl M, Hamacher T (2019) Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy system. Appl Energy 237:862–872 CrossRef
10.
go back to reference Carmo M, Keeley GP, Holtz D, Grube T, Robinius M, Muller M, Stolten D. PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling. Int J Hydrog Energy 44(7):3450–3455 Carmo M, Keeley GP, Holtz D, Grube T, Robinius M, Muller M, Stolten D. PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling. Int J Hydrog Energy 44(7):3450–3455
11.
go back to reference Sreeraj, P, Vedarajan, R, Rajalakshmi, Ramadesigan V (2021) Screening of recycled membrane with crystallinity as a fundamental property. Int J Hydrog Energy 46(24):13020–13028 Sreeraj, P, Vedarajan, R, Rajalakshmi, Ramadesigan V (2021) Screening of recycled membrane with crystallinity as a fundamental property. Int J Hydrog Energy 46(24):13020–13028
12.
go back to reference Moghaddam JA, Parnian MA, Rowshanzamir S (2018) Preparation, characterisation, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications. Energy 161:699–709 CrossRef Moghaddam JA, Parnian MA, Rowshanzamir S (2018) Preparation, characterisation, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications. Energy 161:699–709 CrossRef
13.
go back to reference Wittstock R, Pehlken A, Wark M (2016) Challenges in automotive fuel cells recycling. Recycle 1(3):343–364 CrossRef Wittstock R, Pehlken A, Wark M (2016) Challenges in automotive fuel cells recycling. Recycle 1(3):343–364 CrossRef
14.
go back to reference Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337(6095):690–695 CrossRef Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337(6095):690–695 CrossRef
15.
go back to reference HyTechCycling (2018) Existing end-of-life technologies applicable to FCH products HyTechCycling (2018) Existing end-of-life technologies applicable to FCH products
16.
go back to reference HyTechCycling (2018) New end-of-life technologies applicable to FCH products HyTechCycling (2018) New end-of-life technologies applicable to FCH products
17.
go back to reference Sandig-Predzymirska L, Barreiros TV, Thiere A, Weigelt D, Stelter VM, Charitos M (2021) Recycling strategy for the extraction of PGMs from spent PEM electrodes. In: EMC 2021. Freiberg Sandig-Predzymirska L, Barreiros TV, Thiere A, Weigelt D, Stelter VM, Charitos M (2021) Recycling strategy for the extraction of PGMs from spent PEM electrodes. In: EMC 2021. Freiberg
18.
go back to reference Shore, L (2012) Process for recycling components PEM fuel cell membrane electrode assembly. Washington, DC Patent 8,124,261 Shore, L (2012) Process for recycling components PEM fuel cell membrane electrode assembly. Washington, DC Patent 8,124,261
19.
go back to reference Grot S, Grot W (2007) Recycling of used perfluorosulfonic acid membranes. U.S.A Patent 7255798, 14 August 2007 Grot S, Grot W (2007) Recycling of used perfluorosulfonic acid membranes. U.S.A Patent 7255798, 14 August 2007
20.
go back to reference Ohriner EK (2008) Processing of iridium and iridium alloys. Platin Met Rev 52(3):186 CrossRef Ohriner EK (2008) Processing of iridium and iridium alloys. Platin Met Rev 52(3):186 CrossRef
21.
go back to reference Serpe A (2008) Green chemistry for precious metals recovery from WEEE. In: Waste electrical and electronic equipment recycling 2008. Woodhead Publishing, pp 271–332 Serpe A (2008) Green chemistry for precious metals recovery from WEEE. In: Waste electrical and electronic equipment recycling 2008. Woodhead Publishing, pp 271–332
22.
go back to reference Nguyen TH, Sonu TH, Lee MS (2016) Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy 164:71–77 Nguyen TH, Sonu TH, Lee MS (2016) Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy 164:71–77
23.
go back to reference Ueda T, Ichiishi S, Okuda A, Matsutani K (2016) Refining and recycling technologies for precious metals. Metal sustainability: global challenges, consequences and prospects 2016. John Wiley & Sons, West Sussex, pp 333–360 CrossRef Ueda T, Ichiishi S, Okuda A, Matsutani K (2016) Refining and recycling technologies for precious metals. Metal sustainability: global challenges, consequences and prospects 2016. John Wiley & Sons, West Sussex, pp 333–360 CrossRef
24.
go back to reference Kedari S, Coll MT, Fortuny A, Goralska E, Sastre AM (2004) Liquid-liquid extraction of Ir, Ru, and Rh from chloride solutions and their separation using different commercially available solvent extraction reagents. Sep Sci Technol 40(9):1927–1946 CrossRef Kedari S, Coll MT, Fortuny A, Goralska E, Sastre AM (2004) Liquid-liquid extraction of Ir, Ru, and Rh from chloride solutions and their separation using different commercially available solvent extraction reagents. Sep Sci Technol 40(9):1927–1946 CrossRef
25.
go back to reference Jha MK, Lee JC, Kim MS, Jeong J, Kim BS, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy 133:23–32 CrossRef Jha MK, Lee JC, Kim MS, Jeong J, Kim BS, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy 133:23–32 CrossRef
26.
go back to reference Duclos L, Svecova L, Laforest V, Mandil G, Thivel PX (2016) Process development and optimisation for platinum recovery from PEM fuel cell catalyst. Hydrometallurgy 160:79–89 CrossRef Duclos L, Svecova L, Laforest V, Mandil G, Thivel PX (2016) Process development and optimisation for platinum recovery from PEM fuel cell catalyst. Hydrometallurgy 160:79–89 CrossRef
27.
go back to reference Hodnik N, Baldizzone C, Polymeros G, Geiger S, Grote JP, Cherevko S, Mingers A, Zeradjanin A, Mayrhofer KJ (2016) Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nat Commun 7(13164) Hodnik N, Baldizzone C, Polymeros G, Geiger S, Grote JP, Cherevko S, Mingers A, Zeradjanin A, Mayrhofer KJ (2016) Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nat Commun 7(13164)
28.
go back to reference Zhao J, He X, Tian J, Wan C, Jiang C (2007) Reclaim/recycle of Pt/C catalysts for PEMFC. Energy Convers Manag 48(2):450–453 CrossRef Zhao J, He X, Tian J, Wan C, Jiang C (2007) Reclaim/recycle of Pt/C catalysts for PEMFC. Energy Convers Manag 48(2):450–453 CrossRef
29.
go back to reference Pavlisic A, Jovanovic P, Selih VS, Sala M, Hodnik N, Gaverscek M (2018) Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling. J Electrochem Soc 165(6):F3161–F3165 CrossRef Pavlisic A, Jovanovic P, Selih VS, Sala M, Hodnik N, Gaverscek M (2018) Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling. J Electrochem Soc 165(6):F3161–F3165 CrossRef
30.
go back to reference Jovanovic P, Hodnik N, Ruiz-Zepeda F, Arcon I, Jozinovic B, Zorko M, Bele M, Sala M, Selih SV, Hocevar S, Gaberscek M (2017) Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry and x-ray absorption spectroscopy study. J Am Chem Soc 139(36):12837–12846 CrossRef Jovanovic P, Hodnik N, Ruiz-Zepeda F, Arcon I, Jozinovic B, Zorko M, Bele M, Sala M, Selih SV, Hocevar S, Gaberscek M (2017) Electrochemical dissolution of iridium and iridium oxide particles in acidic media: transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry and x-ray absorption spectroscopy study. J Am Chem Soc 139(36):12837–12846 CrossRef
31.
go back to reference Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO 2, Ir, and IrO 2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catalysis Today 262:170–180 Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO 2, Ir, and IrO 2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catalysis Today 262:170–180
32.
go back to reference Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6(8):2219–2223 CrossRef Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6(8):2219–2223 CrossRef
33.
go back to reference Kasian O, Grote JP, Geiger S, Cherevko S, Mayrhofer KJ (2018) The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on Iridium. Angew Chem Int Ed 57:2488–2491 CrossRef Kasian O, Grote JP, Geiger S, Cherevko S, Mayrhofer KJ (2018) The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on Iridium. Angew Chem Int Ed 57:2488–2491 CrossRef
34.
go back to reference Sharma R, Nielsen KR, Lund PB, Simonsen SB, Grahl-Madsen L, Anderson SM (2019) Sustainable platinum recycling through electrochemical dissolution of platinum nanoparticles from fuel cell electrodes. ChemElectroChem 6(17):4471–4482 CrossRef Sharma R, Nielsen KR, Lund PB, Simonsen SB, Grahl-Madsen L, Anderson SM (2019) Sustainable platinum recycling through electrochemical dissolution of platinum nanoparticles from fuel cell electrodes. ChemElectroChem 6(17):4471–4482 CrossRef
35.
go back to reference Latsuzbaia R, Negro E, Koper GJM (2015) Environmentally friendly carbon-preserving recovery of noble metals from supported fuel cell catalysts. Chemsuschem 8(11):1926–2934 CrossRef Latsuzbaia R, Negro E, Koper GJM (2015) Environmentally friendly carbon-preserving recovery of noble metals from supported fuel cell catalysts. Chemsuschem 8(11):1926–2934 CrossRef
36.
go back to reference Takeda O, Okabe TH (2019) Current status of titanium recycling and related technologies. JOM 71:1981–1990 CrossRef Takeda O, Okabe TH (2019) Current status of titanium recycling and related technologies. JOM 71:1981–1990 CrossRef
37.
go back to reference Wang D, Li Q, Xu M, Jiang G, Zhang Y, He G (2017) A novel approach to fabrication of three-dimensional porous titanium with controllable structure. Mater Sci Eng 71(1):1046–1051 CrossRef Wang D, Li Q, Xu M, Jiang G, Zhang Y, He G (2017) A novel approach to fabrication of three-dimensional porous titanium with controllable structure. Mater Sci Eng 71(1):1046–1051 CrossRef
38.
go back to reference Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Collection and processing of recycled copper. In: Extractive metallurgy of copper (Fifth Edition), Elsevier, pp 373–387 Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Collection and processing of recycled copper. In: Extractive metallurgy of copper (Fifth Edition), Elsevier, pp 373–387
39.
go back to reference Samuelsson C, Bjorkman B (2014) Copper recycling. In: Handbook of recycling: state-of-the-art for practitioners, analysts, and scientists 2014. Newnes, pp 85–94 Samuelsson C, Bjorkman B (2014) Copper recycling. In: Handbook of recycling: state-of-the-art for practitioners, analysts, and scientists 2014. Newnes, pp 85–94
40.
go back to reference Schlesinger ME (2006) Common impurities in molten aluminium. In: Aluminium recycling 2006. CRC Press, Boca Raton, pp 171–192 CrossRef Schlesinger ME (2006) Common impurities in molten aluminium. In: Aluminium recycling 2006. CRC Press, Boca Raton, pp 171–192 CrossRef
41.
go back to reference Bjorkman B, Samuelsson C (2014) Recycling of steel. In: Handbook of recycling: state-of-the-art for practioners, analysts, and scientists 2014. Newnes, pp 65–83 Bjorkman B, Samuelsson C (2014) Recycling of steel. In: Handbook of recycling: state-of-the-art for practioners, analysts, and scientists 2014. Newnes, pp 65–83
Metadata
Title
Recyclability of Proton Exchange Membrane Electrolysers for Green Hydrogen Production
Authors
Nawshad Haque
Sarb Giddey
Sejuti Saha
Paul Sernia
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-22765-3_14