Skip to main content
Top

2021 | OriginalPaper | Chapter

Recycled Nanomaterials for Energy Storage (Supercapacitor) Applications

Authors : Gomaa A. M. Ali, Zinab H. Bakr, Vahid Safarifard, Kwok Feng Chong

Published in: Waste Recycling Technologies for Nanomaterials Manufacturing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, humankind is in urgent need of energy generation and storage systems. The supercapacitor is one of the essential types of storage systems. The high cost of obtaining capacitor electrodes is the reason behind the researchers’ attempts to find low-cost sources. The need for the development of efficient energy storage systems is paramount in meeting the world’s future energy targets, especially when the energy costs are on the increase in addition to the escalating demand. Energy storage technologies can improve efficiencies in supply systems by storing the energy when it is in excess, and then release it timely. Batteries are slowly becoming obsolete due to their poor cyclability (limited to a few thousand) and long charge time (tens of minutes) in comparison to supercapacitors. On the other hand, supercapacitors have a long lifetime and fast charging times. Nowadays, the research focuses on advanced suitable electrode materials that directly reflect in supercapacitor technology enhancement. The researchers have prepared a variety of single components and hybrid electrodes by recycling various environmental wastes. The recycled materials include metal oxides (MnO2, Co3O4, etc.), carbon materials (carbon nanosphere, porous carbon nanoparticles, activated carbon), and hybrid materials (MnO2/graphene, CaO/AC). The obtained materials exhibited interesting structural and morphological properties as well as excellent energy storage behavior. The recycling technique provides a unique alternative cheap way for getting supercapacitor electrode materials, as well as it helps to maintain a clean environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rӧtz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRef Rӧtz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRef
2.
go back to reference Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):28–62CrossRef Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):28–62CrossRef
3.
go back to reference Syzdek J, Marcinek M, Kostecki R (2014) Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes. J Power Sources 245:739–744CrossRef Syzdek J, Marcinek M, Kostecki R (2014) Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes. J Power Sources 245:739–744CrossRef
4.
go back to reference Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
5.
go back to reference Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104:4245–4269CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104:4245–4269CrossRef
6.
go back to reference Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York
7.
go back to reference Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605CrossRef Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4(5):1592–1605CrossRef
8.
go back to reference Mosa IM, Pattammattel A, Kadimisetty K, Pande P, El-Kady MF, Bishop GW, Novak M, Kaner RB, Basu AK, Kumar CV (2017) Ultrathin graphene-protein supercapacitors for miniaturized bioelectronics. Adv Energy Mater 7(17):1700358CrossRef Mosa IM, Pattammattel A, Kadimisetty K, Pande P, El-Kady MF, Bishop GW, Novak M, Kaner RB, Basu AK, Kumar CV (2017) Ultrathin graphene-protein supercapacitors for miniaturized bioelectronics. Adv Energy Mater 7(17):1700358CrossRef
9.
go back to reference Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Letter 8(10):3498–3502CrossRef Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Letter 8(10):3498–3502CrossRef
10.
go back to reference Lee SP, Ali GAM, Hegazy HH, Lim HN, Chong KF (2021) Optimizing reduced graphene oxide aerogel for a supercapacitor. Energy & Fuel 35(5):4559–4569 Lee SP, Ali GAM, Hegazy HH, Lim HN, Chong KF (2021) Optimizing reduced graphene oxide aerogel for a supercapacitor. Energy & Fuel 35(5):4559–4569
11.
go back to reference Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–39024 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–39024
12.
go back to reference Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181CrossRef Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181CrossRef
13.
go back to reference Nathan T, Aziz A, Noor AF, Prabaharan SRS (2008) Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem 12(7–8):1003–1009CrossRef Nathan T, Aziz A, Noor AF, Prabaharan SRS (2008) Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem 12(7–8):1003–1009CrossRef
14.
go back to reference Xie L, Li K, Sun G, Hu Z, Lv C, Wang J, Zhang C (2012) Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. J Solid State Electrochem 17(1):55–61CrossRef Xie L, Li K, Sun G, Hu Z, Lv C, Wang J, Zhang C (2012) Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. J Solid State Electrochem 17(1):55–61CrossRef
15.
go back to reference Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028CrossRef Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028CrossRef
16.
go back to reference Patil DS, Pawar SA, Devan RS, Gang MG, Ma YR, Kim JH, Patil PS (2013) Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim Acta 105:569–577CrossRef Patil DS, Pawar SA, Devan RS, Gang MG, Ma YR, Kim JH, Patil PS (2013) Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim Acta 105:569–577CrossRef
17.
go back to reference Endo M, Takeda T, Kim YJ, Koshiba K, Ishii K (2001) High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons. Carbon Sci 1(2–3):117–128 Endo M, Takeda T, Kim YJ, Koshiba K, Ishii K (2001) High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons. Carbon Sci 1(2–3):117–128
18.
go back to reference Lota G, Centeno TA, Frackowiak E, Stoeckli F (2008) Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochim Acta 53(5):2210–2216CrossRef Lota G, Centeno TA, Frackowiak E, Stoeckli F (2008) Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochim Acta 53(5):2210–2216CrossRef
19.
go back to reference Chen T, Dai L (2013) Carbon nanomaterials for high–performance supercapacitors. Mater Today 16(7–8):272–280CrossRef Chen T, Dai L (2013) Carbon nanomaterials for high–performance supercapacitors. Mater Today 16(7–8):272–280CrossRef
20.
go back to reference Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef
21.
go back to reference McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KS, Rolison DR (1999) Structure of hydrous ruthenium oxides implications for charge storage. J Phys Chem B 103:4825–4832CrossRef McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KS, Rolison DR (1999) Structure of hydrous ruthenium oxides implications for charge storage. J Phys Chem B 103:4825–4832CrossRef
22.
go back to reference Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochim Acta 49(21):3469–3477CrossRef Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochim Acta 49(21):3469–3477CrossRef
23.
go back to reference Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRef Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRef
24.
go back to reference Kim H, Popov BN (2003) A mathematical model of oxide/carbon composite electrode for supercapacitors. J Electrochem Soc 150(9):A1153–A1160CrossRef Kim H, Popov BN (2003) A mathematical model of oxide/carbon composite electrode for supercapacitors. J Electrochem Soc 150(9):A1153–A1160CrossRef
25.
go back to reference Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725CrossRef Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725CrossRef
26.
go back to reference Meher SK, Rao GR (2011) Ultralayered Co3O4 for high–performance supercapacitor applications. J Phy Chem C 115(31):15646–15654CrossRef Meher SK, Rao GR (2011) Ultralayered Co3O4 for high–performance supercapacitor applications. J Phy Chem C 115(31):15646–15654CrossRef
27.
go back to reference Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low–cost high–performance solid–state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736CrossRef Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low–cost high–performance solid–state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736CrossRef
28.
go back to reference Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512CrossRef Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512CrossRef
29.
go back to reference Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef
30.
go back to reference Ali GAM (2020) Recycled MnO2 nanoflowers and graphene nanosheets for low-cost and high performance asymmetric supercapacitor. J Electron Mater 49:5411–5421 Ali GAM (2020) Recycled MnO2 nanoflowers and graphene nanosheets for low-cost and high performance asymmetric supercapacitor. J Electron Mater 49:5411–5421
31.
go back to reference Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234CrossRef Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234CrossRef
32.
go back to reference Aboelazm EAA, Ali GAM, Algarni H, Chong KF (2018) Flakes size-dependent optical and electrochemical properties of MoS2. Curr Nanosci 14(2):1–5 Aboelazm EAA, Ali GAM, Algarni H, Chong KF (2018) Flakes size-dependent optical and electrochemical properties of MoS2. Curr Nanosci 14(2):1–5
33.
go back to reference Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2016) Optical and electrochemical properties of Co3O4/SiO2 nanocomposite. Adv Mater Res 1133:447–451CrossRef Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2016) Optical and electrochemical properties of Co3O4/SiO2 nanocomposite. Adv Mater Res 1133:447–451CrossRef
34.
go back to reference Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159(9):A1425–A1430CrossRef Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159(9):A1425–A1430CrossRef
35.
go back to reference Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450CrossRef Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450CrossRef
36.
go back to reference Chou SL, Cheng FY, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ–MnO2 films. J Power Sources 162(1):727–734CrossRef Chou SL, Cheng FY, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ–MnO2 films. J Power Sources 162(1):727–734CrossRef
37.
go back to reference Yousefi T, Golikand AN, Hossein Mashhadizadeh M, Aghazadeh M (2012) Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies. J Solid State Chem 190:202–207CrossRef Yousefi T, Golikand AN, Hossein Mashhadizadeh M, Aghazadeh M (2012) Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies. J Solid State Chem 190:202–207CrossRef
38.
go back to reference Yousefi T, Davarkhah R, Golikand AN, Mashhadizadeh MH (2013) Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater Sci Semicond Process 16(3):868–876CrossRef Yousefi T, Davarkhah R, Golikand AN, Mashhadizadeh MH (2013) Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater Sci Semicond Process 16(3):868–876CrossRef
39.
go back to reference Yang G, Wang B, Guo W, Bu Z, Miao C, Xue T, Li H (2012) Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors. Mater Res Bull 47(11):3120–3123CrossRef Yang G, Wang B, Guo W, Bu Z, Miao C, Xue T, Li H (2012) Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors. Mater Res Bull 47(11):3120–3123CrossRef
40.
go back to reference Yan D, Guo Z, Zhu G, Yu Z, Xu H, Yu A (2012) MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J Power Sources 199:409–412CrossRef Yan D, Guo Z, Zhu G, Yu Z, Xu H, Yu A (2012) MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J Power Sources 199:409–412CrossRef
41.
go back to reference Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon–based materials. Small 6(6):711–723CrossRef Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon–based materials. Small 6(6):711–723CrossRef
42.
go back to reference Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–43 Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–43
43.
go back to reference Barhoum A, Shalan AE, El-Hout SI, Ali GAM, Abdelbasir SM, Abu Serea ES, Ibrahim AH, Pal K (2019) A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of nanofibers. Springer International Publishing, Cham, pp 1–40CrossRef Barhoum A, Shalan AE, El-Hout SI, Ali GAM, Abdelbasir SM, Abu Serea ES, Ibrahim AH, Pal K (2019) A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of nanofibers. Springer International Publishing, Cham, pp 1–40CrossRef
44.
go back to reference Pan H, Li J, Feng Y (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668CrossRef Pan H, Li J, Feng Y (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668CrossRef
45.
go back to reference Tashima D, Yamamoto E, Kai N, Fujikawa D, Sakai G, Otsubo M, Kijima T (2011) Double layer capacitance of high surface area carbon nanospheres derived from resorcinol–formaldehyde polymers. Carbon 49(14):4848–4857CrossRef Tashima D, Yamamoto E, Kai N, Fujikawa D, Sakai G, Otsubo M, Kijima T (2011) Double layer capacitance of high surface area carbon nanospheres derived from resorcinol–formaldehyde polymers. Carbon 49(14):4848–4857CrossRef
46.
go back to reference Okajima K, Ikeda A, Kamoshita K, Sudoh M (2005) High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim Acta 51(5):972–977CrossRef Okajima K, Ikeda A, Kamoshita K, Sudoh M (2005) High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim Acta 51(5):972–977CrossRef
47.
go back to reference Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc 129:20–21CrossRef Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc 129:20–21CrossRef
48.
go back to reference Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRef Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRef
49.
go back to reference Marina PE, Ali GAM, See LM, Teo EYL, Ng E-P, Chong KF (2016) In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement. Arab J Chem 12(8):3883–3889 Marina PE, Ali GAM, See LM, Teo EYL, Ng E-P, Chong KF (2016) In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement. Arab J Chem 12(8):3883–3889
50.
go back to reference Ali GAM, Yusoff MM, Chong KF (2016) Graphene electrochemical production and its energy storage properties. ARPN J Eng Appl Sci 11(16):9712–9717 Ali GAM, Yusoff MM, Chong KF (2016) Graphene electrochemical production and its energy storage properties. ARPN J Eng Appl Sci 11(16):9712–9717
51.
go back to reference Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044CrossRef Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044CrossRef
52.
go back to reference Ali GAM, Teo EYL, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRef Ali GAM, Teo EYL, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRef
53.
go back to reference Ali GAM, Megiel E, Romański J, Algarni H, Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J Mol Liq 271:31–39CrossRef Ali GAM, Megiel E, Romański J, Algarni H, Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J Mol Liq 271:31–39CrossRef
54.
go back to reference Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291CrossRef Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291CrossRef
55.
go back to reference Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene–based supercapacitor with an ultrahigh energy density. Nano Letter 10(12):4863–4868CrossRef Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene–based supercapacitor with an ultrahigh energy density. Nano Letter 10(12):4863–4868CrossRef
56.
go back to reference Chung TF, Shen T, Cao H, Jauregui LA, Wu WEI, Yu Q, Newell D, Chen YP (2013) Synthetic graphene grown by chemical vapor deposition on copper foils. Int J Mod Phys B 27(10):1341002–1341016CrossRef Chung TF, Shen T, Cao H, Jauregui LA, Wu WEI, Yu Q, Newell D, Chen YP (2013) Synthetic graphene grown by chemical vapor deposition on copper foils. Int J Mod Phys B 27(10):1341002–1341016CrossRef
57.
go back to reference Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2(17):6086–6091CrossRef Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2(17):6086–6091CrossRef
58.
go back to reference Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498CrossRef Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498CrossRef
59.
go back to reference Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112(1):127–131CrossRef Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112(1):127–131CrossRef
60.
go back to reference Roberts ME, Wheeler DR, McKenzie BB, Bunker BC (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J Mater Chem 19(38):6977–6979CrossRef Roberts ME, Wheeler DR, McKenzie BB, Bunker BC (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J Mater Chem 19(38):6977–6979CrossRef
61.
go back to reference Ma J, Guo Q, Gao HL, Qin X (2015) Synthesis of C60/graphene composite as electrode in supercapacitors. Fullerenes, Nanotubes, Carbon Nanostruct 23(6):477–482CrossRef Ma J, Guo Q, Gao HL, Qin X (2015) Synthesis of C60/graphene composite as electrode in supercapacitors. Fullerenes, Nanotubes, Carbon Nanostruct 23(6):477–482CrossRef
62.
go back to reference Wang JG, Yang Y, Huang ZH, Kang F (2012) Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim Acta 75:213–219CrossRef Wang JG, Yang Y, Huang ZH, Kang F (2012) Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim Acta 75:213–219CrossRef
63.
go back to reference Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2020) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24(1):25–34CrossRef Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2020) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24(1):25–34CrossRef
64.
go back to reference Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568–3577CrossRef Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568–3577CrossRef
65.
go back to reference Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106CrossRef Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106CrossRef
66.
go back to reference Meng F, Yan X, Zhu Y, Si P (2013) Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Res Lett 8(1):1–8CrossRef Meng F, Yan X, Zhu Y, Si P (2013) Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Res Lett 8(1):1–8CrossRef
67.
go back to reference Liu JZ, Mirri F, Notarianni M, Pasquali M, Motta N (2015) High performance all-carbon thin film supercapacitors. J Power Sources 274:823–830CrossRef Liu JZ, Mirri F, Notarianni M, Pasquali M, Motta N (2015) High performance all-carbon thin film supercapacitors. J Power Sources 274:823–830CrossRef
68.
go back to reference Wu MS, Lin CJ, Ho CL (2012) Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors. Electrochim Acta 81:44–48CrossRef Wu MS, Lin CJ, Ho CL (2012) Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors. Electrochim Acta 81:44–48CrossRef
69.
go back to reference Liu Y, Zhao W, Zhang X (2008) Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochim Acta 53(8):3296–3304CrossRef Liu Y, Zhao W, Zhang X (2008) Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochim Acta 53(8):3296–3304CrossRef
70.
go back to reference Tanahashi I, Yoshida A, Nishino A (1990) Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte. Bulletin Chem Soc Japan 63(12):3611–3614CrossRef Tanahashi I, Yoshida A, Nishino A (1990) Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte. Bulletin Chem Soc Japan 63(12):3611–3614CrossRef
71.
go back to reference Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine–based carbon. Chem Mater 17(5):1241–1247CrossRef Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine–based carbon. Chem Mater 17(5):1241–1247CrossRef
72.
go back to reference Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim JH, Park SB (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128CrossRef Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim JH, Park SB (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128CrossRef
73.
go back to reference Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158:1523–1532CrossRef Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158:1523–1532CrossRef
74.
go back to reference Yin J, Park J (2015) Asymmetric supercapacitors based on the in situ–grown mesoporous nickel oxide and activated carbon. J Solid State Electrochem 1–8 Yin J, Park J (2015) Asymmetric supercapacitors based on the in situ–grown mesoporous nickel oxide and activated carbon. J Solid State Electrochem 1–8
75.
go back to reference Adekunle AS, Ozoemena KI, Mamba BB, Agboola BO, Oluwatobi OS (2011) Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite. Int J Electrochem Sci 6:4760–4774 Adekunle AS, Ozoemena KI, Mamba BB, Agboola BO, Oluwatobi OS (2011) Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite. Int J Electrochem Sci 6:4760–4774
76.
go back to reference Freitas M, Garcia E (2007) Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J Power Sources 171(2):953–959CrossRef Freitas M, Garcia E (2007) Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J Power Sources 171(2):953–959CrossRef
77.
go back to reference Zhang X, Xie Y, Lin X, Li H, Cao H (2013) An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J Mater Cycles Waste Manage 15(4):420–430CrossRef Zhang X, Xie Y, Lin X, Li H, Cao H (2013) An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J Mater Cycles Waste Manage 15(4):420–430CrossRef
78.
go back to reference Li Y, Xi G (2005) The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl. J Hazard Mater 127(1–3):244–248CrossRef Li Y, Xi G (2005) The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl. J Hazard Mater 127(1–3):244–248CrossRef
79.
go back to reference Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261CrossRef Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261CrossRef
80.
go back to reference Rácz R, Ilea P (2013) Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc-carbon-MnO2 battery powder. Hydrometallurgy 139:116–123CrossRef Rácz R, Ilea P (2013) Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc-carbon-MnO2 battery powder. Hydrometallurgy 139:116–123CrossRef
81.
go back to reference Ferella F, De Michelis I, Vegliò F (2008) Process for the recycling of alkaline and zinc–carbon spent batteries. J Power Sources 183(2):805–811CrossRef Ferella F, De Michelis I, Vegliò F (2008) Process for the recycling of alkaline and zinc–carbon spent batteries. J Power Sources 183(2):805–811CrossRef
82.
go back to reference Freitas MBJG, Pegoretti VC, Pietre MK (2007) Recycling manganese from spent Zn–MnO2 primary batteries. J Power Sources 164(2):947–952CrossRef Freitas MBJG, Pegoretti VC, Pietre MK (2007) Recycling manganese from spent Zn–MnO2 primary batteries. J Power Sources 164(2):947–952CrossRef
83.
go back to reference Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130(1–2):291–298CrossRef Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130(1–2):291–298CrossRef
84.
go back to reference Gallegos MV, Falco LR, Peluso MA, Sambeth JE, Thomas HJ (2013) Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination. Waste Manag 33(6):1483–1490 Gallegos MV, Falco LR, Peluso MA, Sambeth JE, Thomas HJ (2013) Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination. Waste Manag 33(6):1483–1490
85.
go back to reference Sayilgan E, Kukrer T, Civelekoglu G, Ferella F, Akcil A, Veglio F, Kitis M (2009) A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy 97(3–4):158–166CrossRef Sayilgan E, Kukrer T, Civelekoglu G, Ferella F, Akcil A, Veglio F, Kitis M (2009) A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy 97(3–4):158–166CrossRef
86.
go back to reference Michelis ID, Ferella F, Karakaya E, Beolchini F, Vegliò F (2007) Recovery of zinc and manganese from alkaline and zinc–carbon spent batteries. J Power Sources 172(2):975–983CrossRef Michelis ID, Ferella F, Karakaya E, Beolchini F, Vegliò F (2007) Recovery of zinc and manganese from alkaline and zinc–carbon spent batteries. J Power Sources 172(2):975–983CrossRef
87.
go back to reference Souza CCBM, Tenório JAS (2004) Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing. J Power Sources 136(1):191–196CrossRef Souza CCBM, Tenório JAS (2004) Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing. J Power Sources 136(1):191–196CrossRef
88.
go back to reference Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43(11):8440–8448CrossRef Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43(11):8440–8448CrossRef
89.
go back to reference Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807 Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807
90.
go back to reference Hu J, Zhang J, Li H, Chen Y, Wang C (2017) A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources 351:192–199CrossRef Hu J, Zhang J, Li H, Chen Y, Wang C (2017) A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources 351:192–199CrossRef
91.
go back to reference Xiao J, Li J, Xu Z (2017) Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater 338:124–131CrossRef Xiao J, Li J, Xu Z (2017) Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. J Hazard Mater 338:124–131CrossRef
92.
go back to reference Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 30(12):2615–2621CrossRef Li L, Ge J, Chen R, Wu F, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 30(12):2615–2621CrossRef
93.
go back to reference Ordoñez J, Gago EJ, Girard A (2016) Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew Sustain Energy Rev 60:195–205CrossRef Ordoñez J, Gago EJ, Girard A (2016) Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew Sustain Energy Rev 60:195–205CrossRef
94.
go back to reference Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. J Power Sources 83(1):75–78CrossRef Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium battery recycling process. J Power Sources 83(1):75–78CrossRef
95.
go back to reference Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112(1):247–254CrossRef Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112(1):247–254CrossRef
96.
go back to reference Barbieri EMS, Lima EPC, Lelis MFF, Freitas MBJG (2014) Recycling of cobalt from spent Li-ion batteries as β-Co(OH)2 and the application of Co3O4 as a pseudocapacitor. J Power Sources 270:158–165CrossRef Barbieri EMS, Lima EPC, Lelis MFF, Freitas MBJG (2014) Recycling of cobalt from spent Li-ion batteries as β-Co(OH)2 and the application of Co3O4 as a pseudocapacitor. J Power Sources 270:158–165CrossRef
97.
go back to reference Barbieri EMS, Lima EPC, Cantarino SJ, Lelis MFF, Freitas MBJG (2014) Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties. J Power Sources 269:158–163CrossRef Barbieri EMS, Lima EPC, Cantarino SJ, Lelis MFF, Freitas MBJG (2014) Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties. J Power Sources 269:158–163CrossRef
98.
go back to reference Garcia EM, Tarôco HA, Matencio T, Domingues RZ, dos Santos JAF, Ferreira RV, Lorençon E, Lima DQ, de Freitas MBJG (2012) Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: its application as supercapacitor. J Appl Electrochem 42(6):361–366CrossRef Garcia EM, Tarôco HA, Matencio T, Domingues RZ, dos Santos JAF, Ferreira RV, Lorençon E, Lima DQ, de Freitas MBJG (2012) Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: its application as supercapacitor. J Appl Electrochem 42(6):361–366CrossRef
99.
go back to reference Zhang J, Gong L, Sun K, Jiang J, Zhang X (2012) Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J Solid State Electrochem 16(6):2179–2186CrossRef Zhang J, Gong L, Sun K, Jiang J, Zhang X (2012) Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J Solid State Electrochem 16(6):2179–2186CrossRef
100.
go back to reference Freitas MBJG, Celante VG, Pietre MK (2010) Electrochemical recovery of cobalt and copper from spent Li–ion batteries as multilayer deposits. J Power Sources 195(10):3309–3315CrossRef Freitas MBJG, Celante VG, Pietre MK (2010) Electrochemical recovery of cobalt and copper from spent Li–ion batteries as multilayer deposits. J Power Sources 195(10):3309–3315CrossRef
101.
go back to reference Garcia EM, Santos JS, Pereira EC, Freitas MBJG (2008) Electrodeposition of cobalt from spent Li–ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J Power Sources 185(1):549–553CrossRef Garcia EM, Santos JS, Pereira EC, Freitas MBJG (2008) Electrodeposition of cobalt from spent Li–ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J Power Sources 185(1):549–553CrossRef
102.
go back to reference Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium–ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium–ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef
103.
go back to reference Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111(20):7527–7531CrossRef Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111(20):7527–7531CrossRef
104.
go back to reference Elmouwahidi A, Zapata-Benabithe Z, Carrasco–Marin F, Moreno-Castilla C (2012) Activated carbons from KOH–activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Biores Technol 111:185–190 CrossRef Elmouwahidi A, Zapata-Benabithe Z, Carrasco–Marin F, Moreno-Castilla C (2012) Activated carbons from KOH–activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Biores Technol 111:185–190 CrossRef
105.
go back to reference Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Highly porous electrodes from novel corn grains–based activated carbons for electrical double layer capacitors. Electrochem Commun 10(6):868–871CrossRef Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Highly porous electrodes from novel corn grains–based activated carbons for electrical double layer capacitors. Electrochem Commun 10(6):868–871CrossRef
106.
go back to reference Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JG, Ishak MM, Dollah BN, Hashmi SA (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Biores Technol 132:254–261CrossRef Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JG, Ishak MM, Dollah BN, Hashmi SA (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Biores Technol 132:254–261CrossRef
107.
go back to reference Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195(3):912–918CrossRef Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195(3):912–918CrossRef
108.
go back to reference Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313CrossRef Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313CrossRef
109.
go back to reference Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739CrossRef Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739CrossRef
110.
go back to reference Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol Mater Sci 32(2):305–320 Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol Mater Sci 32(2):305–320
111.
go back to reference Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214CrossRef Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214CrossRef
112.
go back to reference Abdul Manaf SA, Roy P, Sharma KV, Ngaini Z, Malgras V, Aldalbahi A, Alshehri SM, Yamauchi Y, Hegde G (2015) Catalyst-free synthesis of carbon nanospheres for potential biomedical applications: waste to wealth approach. RSC Adv 5(31):24528–24533CrossRef Abdul Manaf SA, Roy P, Sharma KV, Ngaini Z, Malgras V, Aldalbahi A, Alshehri SM, Yamauchi Y, Hegde G (2015) Catalyst-free synthesis of carbon nanospheres for potential biomedical applications: waste to wealth approach. RSC Adv 5(31):24528–24533CrossRef
113.
go back to reference Ali GAM, Habeeb OA, Algarni H, Chong KF (2019) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef Ali GAM, Habeeb OA, Algarni H, Chong KF (2019) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef
115.
go back to reference Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Thanusha TK, Olalere OA (2016) Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon. Aust J Basic Appl Sci 10(17):136–147 Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Thanusha TK, Olalere OA (2016) Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon. Aust J Basic Appl Sci 10(17):136–147
116.
go back to reference Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. Jurnal Teknologi 79(7):1–10 Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. Jurnal Teknologi 79(7):1–10
117.
go back to reference Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malays J Anal Sci 21(2):334–345CrossRef Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malays J Anal Sci 21(2):334–345CrossRef
118.
go back to reference Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Olalere OA (2017) Kinetic, isotherm and equilibrium study of adsorption of hydrogen sulfide from wastewater using modified eggshells. IIUM Eng J 18(1):13–25CrossRef Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Olalere OA (2017) Kinetic, isotherm and equilibrium study of adsorption of hydrogen sulfide from wastewater using modified eggshells. IIUM Eng J 18(1):13–25CrossRef
119.
go back to reference Li Y, Zhang D, He J, Wang Y, Zhang X, Zhang Y, Liu X, Wang K, Wang Y (2019) Hierarchical porous carbon nanosheet derived from waste engine oil for high-performance supercapacitor application. Sustain Energy Fuels 3(2):499–507CrossRef Li Y, Zhang D, He J, Wang Y, Zhang X, Zhang Y, Liu X, Wang K, Wang Y (2019) Hierarchical porous carbon nanosheet derived from waste engine oil for high-performance supercapacitor application. Sustain Energy Fuels 3(2):499–507CrossRef
120.
go back to reference Min J, Zhang S, Li J, Klingeler R, Wen X, Chen X, Zhao X, Tang T, Mijowska E (2019) From polystyrene waste to porous carbon flake and potential application in supercapacitor. Waste Manag 85:333–340CrossRef Min J, Zhang S, Li J, Klingeler R, Wen X, Chen X, Zhao X, Tang T, Mijowska E (2019) From polystyrene waste to porous carbon flake and potential application in supercapacitor. Waste Manag 85:333–340CrossRef
121.
go back to reference Guo X, Luan Z, Lu Y, Fu L, Gai L (2019) NaTi2(PO4)3/C‖carbon package asymmetric flexible supercapacitors with the positive material recycled from spent Zn–Mn dry batteries. J Alloys Compd 576–585 Guo X, Luan Z, Lu Y, Fu L, Gai L (2019) NaTi2(PO4)3/C‖carbon package asymmetric flexible supercapacitors with the positive material recycled from spent Zn–Mn dry batteries. J Alloys Compd 576–585
122.
go back to reference Fu M, Chen W, Zhu X, Yang B, Liu Q (2019) Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 141:748–757CrossRef Fu M, Chen W, Zhu X, Yang B, Liu Q (2019) Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 141:748–757CrossRef
123.
go back to reference Li X, Yin X, Wang W, Zhao H, Liu D, Zhou L, Zhang C, Wang J (2019) Carbon captured from vehicle exhaust by triboelectric particular filter as materials for energy storage. Nano Energy 56:792–798CrossRef Li X, Yin X, Wang W, Zhao H, Liu D, Zhou L, Zhang C, Wang J (2019) Carbon captured from vehicle exhaust by triboelectric particular filter as materials for energy storage. Nano Energy 56:792–798CrossRef
124.
go back to reference de Paula FGF, de Castro MCM, Ortega PFR, Blanco C, Lavall RL, Santamaría R (2018) High value activated carbons from waste polystyrene foams. Microporous Mesoporous Mater 267:181–184CrossRef de Paula FGF, de Castro MCM, Ortega PFR, Blanco C, Lavall RL, Santamaría R (2018) High value activated carbons from waste polystyrene foams. Microporous Mesoporous Mater 267:181–184CrossRef
125.
go back to reference Zhang JJ, Fan HX, Dai XH, Yuan SJ (2018) Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. Royal Soc Open Sci 5(4):1–12CrossRef Zhang JJ, Fan HX, Dai XH, Yuan SJ (2018) Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. Royal Soc Open Sci 5(4):1–12CrossRef
126.
go back to reference Li G, Li Q, Ye J, Fu G, Han JJ, Zhu Y (2017) Activated carbon from the waste water purifier for supercapacitor application. J Solid State Electrochem 21(11):3169–3177CrossRef Li G, Li Q, Ye J, Fu G, Han JJ, Zhu Y (2017) Activated carbon from the waste water purifier for supercapacitor application. J Solid State Electrochem 21(11):3169–3177CrossRef
127.
go back to reference Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent Lithium–Ion battery. Chem Adv Mater 3(4):67–73 Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent Lithium–Ion battery. Chem Adv Mater 3(4):67–73
Metadata
Title
Recycled Nanomaterials for Energy Storage (Supercapacitor) Applications
Authors
Gomaa A. M. Ali
Zinab H. Bakr
Vahid Safarifard
Kwok Feng Chong
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68031-2_7

Premium Partners