Skip to main content
Top

2019 | OriginalPaper | Chapter

Recycling Steel Manufacturing Wastewater Treatment Solid Wastes via In-process Separation with Dynamic Separators

Author : Naiyang Ma

Published in: REWAS 2019

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In steel manufacturing, various solid wastes are generated in wastewater treatment. Iron, carbon, and fluxes (CaO and MgO) are the main beneficial components in these solid wastes for recycling in the ironmaking and steelmaking process. However, the wastewater treatment solid wastes often also contain some undesirable components. Separation of those unwanted components from the wastewater treatment solid wastes is a prerequisite to recycle the solid wastes safely, economically, and environmentally. In this contribution, producing clean wastewater treatment solid wastes via dynamic separation at ArcelorMittal is reviewed and discussed, and some case studies are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference U.S. Environmental Protection Agency Office of Water (2002) Development document for final effluent limitations guidelines and standards for the iron and steel manufacturing point source category. United States Environmental Protection Agency report, EPA-821-R-02-004 U.S. Environmental Protection Agency Office of Water (2002) Development document for final effluent limitations guidelines and standards for the iron and steel manufacturing point source category. United States Environmental Protection Agency report, EPA-821-R-02-004
3.
go back to reference International Iron and Steel Institute (1994) The management of steel plant ferruginous by-products. International Iron and Steel Institute, Brussels, Belgium International Iron and Steel Institute (1994) The management of steel plant ferruginous by-products. International Iron and Steel Institute, Brussels, Belgium
5.
go back to reference Geerdes M, Chaigneau R, Kurunov I, Lingiardi O, Ricketts J (2015) Modern blast furnace ironmaking, 3rd edn. IOS Press BV, The Netherlands Geerdes M, Chaigneau R, Kurunov I, Lingiardi O, Ricketts J (2015) Modern blast furnace ironmaking, 3rd edn. IOS Press BV, The Netherlands
6.
go back to reference Ma NY (2014) Sustainable recycling of solid wastes via in-process separation. In: Yurko J et al (eds) EPD congress. Wiley Publishing Company, pp 529–536 Ma NY (2014) Sustainable recycling of solid wastes via in-process separation. In: Yurko J et al (eds) EPD congress. Wiley Publishing Company, pp 529–536
7.
go back to reference Ma NY (2008) On the separation of zinc from dust in ironmaking and steelmaking off-gas cleaning systems. In: Howard SM (ed) EPD congress 2008. The Minerals, Metals & Materials Society, pp 547–552 Ma NY (2008) On the separation of zinc from dust in ironmaking and steelmaking off-gas cleaning systems. In: Howard SM (ed) EPD congress 2008. The Minerals, Metals & Materials Society, pp 547–552
8.
go back to reference Ma NY, Andrade MW (2018) Integrated treatment of offgas, wastewater and solid wastes for minimization of environmental footprints. In: Proceedings of AISTech annual conference. AISTech Ma NY, Andrade MW (2018) Integrated treatment of offgas, wastewater and solid wastes for minimization of environmental footprints. In: Proceedings of AISTech annual conference. AISTech
9.
go back to reference Ma NY, Andrade MW (2015) In-process separation of zinc from blast furnace offgas solid wastes. Iron Steel Technol 3:84–95 Ma NY, Andrade MW (2015) In-process separation of zinc from blast furnace offgas solid wastes. Iron Steel Technol 3:84–95
10.
go back to reference Ma NY, Atkinson M, Neale K (2012) In-process separation of zinc from BOF offgas cleaning system solid wastes. Iron Steel Technol 4:77–86 Ma NY, Atkinson M, Neale K (2012) In-process separation of zinc from BOF offgas cleaning system solid wastes. Iron Steel Technol 4:77–86
11.
go back to reference Ma NY (2016) Recycling of basic oxygen furnace steelmaking dust by in-process separation of zinc from the dust. J Clean Prod 112:4497–4504CrossRef Ma NY (2016) Recycling of basic oxygen furnace steelmaking dust by in-process separation of zinc from the dust. J Clean Prod 112:4497–4504CrossRef
12.
go back to reference Uno S et al (1979) Dezincing equipment and operation based on wet classification of wet-cleaned BF dust. Nippon Steel Tech Rep 13:80–84 Uno S et al (1979) Dezincing equipment and operation based on wet classification of wet-cleaned BF dust. Nippon Steel Tech Rep 13:80–84
13.
go back to reference Heijwegen CP, Kat W (1983) Beneficiation of blast furnace sludge. World Steel Metalwork 5:35–39 Heijwegen CP, Kat W (1983) Beneficiation of blast furnace sludge. World Steel Metalwork 5:35–39
14.
go back to reference Butterworth P, Linsley K, Aumonier J (1996) Hydrocyclone treatment of blast furnace slurry within British steel. La Revue de Metallurgie-CIT 6:807–815CrossRef Butterworth P, Linsley K, Aumonier J (1996) Hydrocyclone treatment of blast furnace slurry within British steel. La Revue de Metallurgie-CIT 6:807–815CrossRef
15.
go back to reference Toda H et al (1979) Separation of nonferrous metals from blast furnace flue dust by hydrocyclone. Nippon Steel Techn Rep 13:73–79 Toda H et al (1979) Separation of nonferrous metals from blast furnace flue dust by hydrocyclone. Nippon Steel Techn Rep 13:73–79
16.
go back to reference Ma NY (2012) In-process separation of mill scale from oil at steel hot rolling mills. In: Zhang L et al (eds) EPD congress 2012. Wiley, pp 323–329 Ma NY (2012) In-process separation of mill scale from oil at steel hot rolling mills. In: Zhang L et al (eds) EPD congress 2012. Wiley, pp 323–329
17.
go back to reference Ma NY, Houser JB, Wood LA (2018) Production of cleaner mill scale by dynamic separation of the mill scale from the fast moving flume water at a hot rolling mill. J Clean Prod 176:889–894CrossRef Ma NY, Houser JB, Wood LA (2018) Production of cleaner mill scale by dynamic separation of the mill scale from the fast moving flume water at a hot rolling mill. J Clean Prod 176:889–894CrossRef
18.
go back to reference Ma, NY (2017) A method for separating mill scale from wastewater. International Patent WO2017037540 A1, 9 March 2017 Ma, NY (2017) A method for separating mill scale from wastewater. International Patent WO2017037540 A1, 9 March 2017
19.
go back to reference Ma NY (2009) Production of high-grade potassium chloride from a sinter plant baghouse dust. In: Howard S et al (eds) EPD congress 2009. The Minerals, Metals & Materials Society, pp 927–929 Ma NY (2009) Production of high-grade potassium chloride from a sinter plant baghouse dust. In: Howard S et al (eds) EPD congress 2009. The Minerals, Metals & Materials Society, pp 927–929
Metadata
Title
Recycling Steel Manufacturing Wastewater Treatment Solid Wastes via In-process Separation with Dynamic Separators
Author
Naiyang Ma
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-10386-6_9

Premium Partners