Skip to main content
Top

2024 | OriginalPaper | Chapter

Reduced Order Modeling Research Challenge 2023: Nonlinear Dynamic Response Predictions for an Exhaust Cover Plate

Authors : Kyusic Park, Matthew S. Allen, Max de Bono, Alessio Colombo, Attilio Frangi, Giorgio Gobat, George Haller, Tom Hill, Shobhit Jain, Boris Kramer, Mingwu Li, Loic Salles, David A. Najera-Flores, Simon Neild, Ludovic Renson, Alexander Saccani, Harsh Sharma, Yichang Shen, Paolo Tiso, Michael D. Todd, Cyril Touzé, Christopher Van Damme, Alessandra Vizzaccaro, Zhenwei Xu, Ryan Elliot, Ellad Tadmor

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A variety of reduced order modeling (ROM) methods for geometrically nonlinear structures have been developed over recent decades, each of which takes a distinct approach, and may have different advantages and disadvantages for a given application. This research challenge is motivated by the need for a consistent, reliable, and ongoing process for ROM comparison. In this chapter, seven state-of-the-art ROM methods are evaluated and compared in terms of accuracy and efficiency in capturing the nonlinear characteristics of a benchmark structure: a curved, perforated plate that is part of the exhaust system of a large diesel engine. Preliminary results comparing the full-order and ROM simulations are discussed. The predictions obtained by the various methods are compared to provide an understanding of the performance differences between the ROM methods participating in the challenge. Where possible, comments are provided on insight gained into how geometric nonlinearity contributes to the nonlinear behavior of the benchmark system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021)CrossRef Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021)CrossRef
2.
go back to reference McEwan, M., Wright, J.R., Cooper, J.E., Leung, A.Y.T.: A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation. J. Sound Vib. 243(4), 601–624 (2001)CrossRef McEwan, M., Wright, J.R., Cooper, J.E., Leung, A.Y.T.: A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation. J. Sound Vib. 243(4), 601–624 (2001)CrossRef
3.
go back to reference Hollkamp, J.J., Gordon, R.W.: Reduced-order models for nonlinear response prediction: implicit condensation and expansion. J. Sound Vib. 318(4–5), 1139–1153 (2008)CrossRef Hollkamp, J.J., Gordon, R.W.: Reduced-order models for nonlinear response prediction: implicit condensation and expansion. J. Sound Vib. 318(4–5), 1139–1153 (2008)CrossRef
4.
go back to reference Park, K., Allen, M.S.: A gaussian process regression reduced order model for geometrically nonlinear structures. Mech. Syst. Signal Process. 184, 109720 (2023)CrossRef Park, K., Allen, M.S.: A gaussian process regression reduced order model for geometrically nonlinear structures. Mech. Syst. Signal Process. 184, 109720 (2023)CrossRef
5.
go back to reference Nicolaidou, E., Hill, T.L., Neild, S.A.: Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A 476(2243), 20200589 (2020)MathSciNetCrossRef Nicolaidou, E., Hill, T.L., Neild, S.A.: Indirect reduced-order modelling: using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A 476(2243), 20200589 (2020)MathSciNetCrossRef
6.
go back to reference Nicolaidou, E., Hill, T.L., Neild, S.A.: Detecting internal resonances during model reduction. Proc. R. Soc. A 477(2250), 20210215 (2021)MathSciNetCrossRef Nicolaidou, E., Hill, T.L., Neild, S.A.: Detecting internal resonances during model reduction. Proc. R. Soc. A 477(2250), 20210215 (2021)MathSciNetCrossRef
7.
go back to reference Sombroek, C.S.M., Tiso, P., Renson, L., Kerschen, G.: Numerical computation of nonlinear normal modes in a modal derivative subspace. Comput. Struct. 195, 34–46 (2018)CrossRef Sombroek, C.S.M., Tiso, P., Renson, L., Kerschen, G.: Numerical computation of nonlinear normal modes in a modal derivative subspace. Comput. Struct. 195, 34–46 (2018)CrossRef
8.
go back to reference Marconi, J., Tiso, P., Braghin, F.: A nonlinear reduced order model with parametrized shape defects. Comput. Methods Appl. Mech. Eng. 360, 112785 (2020)MathSciNetCrossRef Marconi, J., Tiso, P., Braghin, F.: A nonlinear reduced order model with parametrized shape defects. Comput. Methods Appl. Mech. Eng. 360, 112785 (2020)MathSciNetCrossRef
9.
go back to reference Marconi, J., Tiso, P., Quadrelli, D.E., Braghin, F.: A higher-order parametric nonlinear reduced-order model for imperfect structures using neumann expansion. Nonlinear Dyn. 104(4), 3039–3063 (2021)CrossRef Marconi, J., Tiso, P., Quadrelli, D.E., Braghin, F.: A higher-order parametric nonlinear reduced-order model for imperfect structures using neumann expansion. Nonlinear Dyn. 104(4), 3039–3063 (2021)CrossRef
10.
go back to reference Jain , S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Nonlinear Dyn. 107, 1–34 (2022)CrossRef Jain , S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Nonlinear Dyn. 107, 1–34 (2022)CrossRef
11.
go back to reference Cenedese, M., Axås, J., Bäuerlein, B., Avila, K., Haller, G.: Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nat. Commun. 13(1), 872 (2022)CrossRef Cenedese, M., Axås, J., Bäuerlein, B., Avila, K., Haller, G.: Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nat. Commun. 13(1), 872 (2022)CrossRef
12.
go back to reference Vizzaccaro, A., Shen, Y., Salles, L., Blahoš, J., Touzé, C.: Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Comput. Methods Appl. Mech. Eng. 384, 113957 (2021)MathSciNetCrossRef Vizzaccaro, A., Shen, Y., Salles, L., Blahoš, J., Touzé, C.: Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures. Comput. Methods Appl. Mech. Eng. 384, 113957 (2021)MathSciNetCrossRef
13.
go back to reference Opreni, A., Vizzaccaro, A., Frangi, A., Touzé, C.: Model order reduction based on direct normal form: application to large finite element mems structures featuring internal resonance. Nonlinear Dyn. 105(2), 1237–1272 (2021)CrossRef Opreni, A., Vizzaccaro, A., Frangi, A., Touzé, C.: Model order reduction based on direct normal form: application to large finite element mems structures featuring internal resonance. Nonlinear Dyn. 105(2), 1237–1272 (2021)CrossRef
14.
go back to reference Opreni, A., Vizzaccaro, A., Touzé, C., Frangi, A.: High-order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to generic forcing terms and parametrically excited systems. Nonlinear Dyn. 111(6), 5401–5447 (2023)CrossRef Opreni, A., Vizzaccaro, A., Touzé, C., Frangi, A.: High-order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to generic forcing terms and parametrically excited systems. Nonlinear Dyn. 111(6), 5401–5447 (2023)CrossRef
15.
go back to reference Najera-Flores, D.A., Todd, M.D.: A structure-preserving neural differential operator with embedded hamiltonian constraints for modeling structural dynamics. Comput. Mech. 72, 1–12 (2023)MathSciNetCrossRef Najera-Flores, D.A., Todd, M.D.: A structure-preserving neural differential operator with embedded hamiltonian constraints for modeling structural dynamics. Comput. Mech. 72, 1–12 (2023)MathSciNetCrossRef
16.
go back to reference Sharma, H., Kramer, B.: Preserving lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems (2022). arXiv preprint arXiv:2203.06361 Sharma, H., Kramer, B.: Preserving lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems (2022). arXiv preprint arXiv:2203.06361
17.
go back to reference Ehrhardt, D.A., Allen, M.S., Beberniss, T.J., Neild, S.A.: Finite element model calibration of a nonlinear perforated plate. J. Sound Vib. 392, 280–294 (2017)CrossRef Ehrhardt, D.A., Allen, M.S., Beberniss, T.J., Neild, S.A.: Finite element model calibration of a nonlinear perforated plate. J. Sound Vib. 392, 280–294 (2017)CrossRef
18.
go back to reference Kerschen, G., Peeters, M., Golinval, J.-C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRef Kerschen, G., Peeters, M., Golinval, J.-C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRef
19.
go back to reference Kuether, R.J., Deaner, B.J., Hollkamp, J.J., Allen, M.S.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53(11), 3273–3285 (2015)CrossRef Kuether, R.J., Deaner, B.J., Hollkamp, J.J., Allen, M.S.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53(11), 3273–3285 (2015)CrossRef
20.
go back to reference Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)MathSciNetCrossRef Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)MathSciNetCrossRef
21.
go back to reference Dankowicz, H., Schilder, F.: Recipes for Continuation. SIAM, Philadelphia (2013)CrossRef Dankowicz, H., Schilder, F.: Recipes for Continuation. SIAM, Philadelphia (2013)CrossRef
Metadata
Title
Reduced Order Modeling Research Challenge 2023: Nonlinear Dynamic Response Predictions for an Exhaust Cover Plate
Authors
Kyusic Park
Matthew S. Allen
Max de Bono
Alessio Colombo
Attilio Frangi
Giorgio Gobat
George Haller
Tom Hill
Shobhit Jain
Boris Kramer
Mingwu Li
Loic Salles
David A. Najera-Flores
Simon Neild
Ludovic Renson
Alexander Saccani
Harsh Sharma
Yichang Shen
Paolo Tiso
Michael D. Todd
Cyril Touzé
Christopher Van Damme
Alessandra Vizzaccaro
Zhenwei Xu
Ryan Elliot
Ellad Tadmor
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_9