Skip to main content
Top

2021 | OriginalPaper | Chapter

Reduced Products of Abstract Domains for Fairness Certification of Neural Networks

Authors : Denis Mazzucato, Caterina Urban

Published in: Static Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present Libra, an open-source abstract interpretation-based static analyzer for certifying fairness of ReLU neural network classifiers for tabular data. Libra combines a sound forward pre-analysis with an exact backward analysis that leverages the polyhedra abstract domain to provide definite fairness guarantees when possible, and to otherwise quantify and describe the biased input space regions. The analysis is configurable in terms of scalability and precision. We equipped Libra with new abstract domains to use in the pre-analysis, including a generic reduced product domain construction, as well as search heuristics to find the best analysis configuration. We additionally set up the backward analysis to allow further parallelization. Our experimental evaluation demonstrates the effectiveness of the approach on neural networks trained on a popular dataset in the fairness literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
2
For simplicity, we ignore ties as they can always be broken arbitrarily.
 
3
This is solely for technical reasons as the serialization of abstract domain elements is not available for the polyhedra domain implementation that Libra relies on. We plan to address this shortcoming as part of our future work.
 
Literature
3.
go back to reference Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: FAT, vol. 81, pp. 77–91. PMLR (2018) Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: FAT, vol. 81, pp. 77–91. PMLR (2018)
4.
go back to reference Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Second International Symposium on Programming, pp. 106–130 (1976) Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Second International Symposium on Programming, pp. 106–130 (1976)
9.
go back to reference Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: ITCS, pp. 214–226. ACM (2012) Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: ITCS, pp. 214–226. ACM (2012)
13.
go back to reference Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)MathSciNetCrossRef Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)MathSciNetCrossRef
16.
go back to reference Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: CHI, pp. 3819–3828. ACM (2015) Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: CHI, pp. 3819–3828. ACM (2015)
19.
go back to reference Manisha, P., Gujar, S.: FNNC: achieving fairness through neural networks. In: IJCAI, pp. 2277–2283 (2020) Manisha, P., Gujar, S.: FNNC: achieving fairness through neural networks. In: IJCAI, pp. 2277–2283 (2020)
21.
go back to reference Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010)
23.
go back to reference Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019)CrossRef Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019)CrossRef
26.
go back to reference Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: NeurIPS 2018, pp. 6369–6379 (2018) Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: NeurIPS 2018, pp. 6369–6379 (2018)
27.
go back to reference Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Security, pp. 1599–1614. USENIX (2018) Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Security, pp. 1599–1614. USENIX (2018)
28.
go back to reference Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ml models with sensitive subspace robustness. In: ICLR (2020) Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ml models with sensitive subspace robustness. In: ICLR (2020)
Metadata
Title
Reduced Products of Abstract Domains for Fairness Certification of Neural Networks
Authors
Denis Mazzucato
Caterina Urban
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-88806-0_15

Premium Partner