Skip to main content
Top

2024 | OriginalPaper | Chapter

Reducing Data Sparsity in Movie Recommendation System

Authors : Aamir Fareed, Saima Hassan, Samir Brahim Belhaouari

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recommendation plays a crucial part in our digital life. When there are no recommendations, getting disoriented in a sea of data is accessible. In massive data sets, the recommendation system (RS) has proven to be an effective information filtering tool, minimizing the information overload experienced by Web users. Collaborative filtering (CF) provides recommendations to the currently active user without first reviewing the content of the information resource. These suggestions or recommendations are based on a lot of user history data. In recent years, it has been seen a decline in the performance of collaborative filtering-based recommendation systems due to a need for more data and a large amount of information. Movies or films, as highly significant entertainment, are usually suggested and endorsed to us by other people. Each individual enjoys a specific kind or sub-genre of film. Most websites like Netflix and IMDB are operating based on recommendations. The only issue that may fail the recommendation system is the difficulty caused by sparsity. In this paper, a new approach will be discussed that has the potential to tackle the problem of sparsity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
6.
7.
go back to reference Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., Chiu, C., Zhan, J., Gewali, L., Oh, P.: T-RECSYS: a novel music recommendation system using deep learning. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6. IEEE (2019). https://doi.org/10.1109/ICCE.2019.8662028 Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., Chiu, C., Zhan, J., Gewali, L., Oh, P.: T-RECSYS: a novel music recommendation system using deep learning. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6. IEEE (2019). https://​doi.​org/​10.​1109/​ICCE.​2019.​8662028
8.
go back to reference Dhruv, A., Kamath, A., Powar, A., Gaikwad, K.: Artist recommendation system using hybrid method: a novel approach. In: Shetty, N.R., Patnaik, L.M., Nagaraj, H.C., Hamsavath, P.N., Nalini, N. (eds.) Emerging Research in Computing, Information, Communication and Applications, pp. 527–542. Springer Singapore (2019). https://doi.org/10.1007/978-981-13-5953-8-44 Dhruv, A., Kamath, A., Powar, A., Gaikwad, K.: Artist recommendation system using hybrid method: a novel approach. In: Shetty, N.R., Patnaik, L.M., Nagaraj, H.C., Hamsavath, P.N., Nalini, N. (eds.) Emerging Research in Computing, Information, Communication and Applications, pp. 527–542. Springer Singapore (2019). https://​doi.​org/​10.​1007/​978-981-13-5953-8-44
11.
go back to reference Walek, B., Fojtik, V.: A hybrid recommender system for recommending relevant movies using an expert system. Exp. Syst. Appl. 158, 113452 (2020)CrossRef Walek, B., Fojtik, V.: A hybrid recommender system for recommending relevant movies using an expert system. Exp. Syst. Appl. 158, 113452 (2020)CrossRef
12.
go back to reference Rahul, M., Pal, P., Yadav, V., Dellwar, D.K., Singh, S.: Impact of similarity measures in K-means clustering method used in movie recommender systems. In: IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, p. 012101. IOP Publishing (2021) Rahul, M., Pal, P., Yadav, V., Dellwar, D.K., Singh, S.: Impact of similarity measures in K-means clustering method used in movie recommender systems. In: IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, p. 012101. IOP Publishing (2021)
14.
go back to reference Aljunid, M.F., Manjaiah, D.H.: Movie recommender system based on collaborative filtering using apache spark. In: Data Management, Analytics and Innovation, pp. 283–295. Springer (2019) Aljunid, M.F., Manjaiah, D.H.: Movie recommender system based on collaborative filtering using apache spark. In: Data Management, Analytics and Innovation, pp. 283–295. Springer (2019)
15.
go back to reference Kong, X., Mao, M., Wang, W., Liu, J., Xu, B.: VOPRec: vector representation learning of papers with text information and structural identity for recommendation. IEEE Trans. Emerg. Topics Comput. 9(1), 226–237 (2018)CrossRef Kong, X., Mao, M., Wang, W., Liu, J., Xu, B.: VOPRec: vector representation learning of papers with text information and structural identity for recommendation. IEEE Trans. Emerg. Topics Comput. 9(1), 226–237 (2018)CrossRef
16.
go back to reference Shrestha, Y.R., Yang, Y.: Fairness in algorithmic decision-making: applications in multi-winner voting, machine learning, and recommender systems. Algorithms 12(9), 199 (2019)MathSciNetCrossRef Shrestha, Y.R., Yang, Y.: Fairness in algorithmic decision-making: applications in multi-winner voting, machine learning, and recommender systems. Algorithms 12(9), 199 (2019)MathSciNetCrossRef
17.
go back to reference Zhang, H., Sun, Y., Zhao, M., Chow, T.W., Wu, Q.J.: Bridging user interest to item content for recommender systems: an optimization model. IEEE Trans. Cyber. 50(10), 4268–4280 (2019)CrossRef Zhang, H., Sun, Y., Zhao, M., Chow, T.W., Wu, Q.J.: Bridging user interest to item content for recommender systems: an optimization model. IEEE Trans. Cyber. 50(10), 4268–4280 (2019)CrossRef
18.
go back to reference Sun, W., Jiang, J., Huang, Y., Li, J., Zhang, M.: An integrated PCA DAEGCN model for movie recommendation in the social Internet of Things. IEEE IoT J. (2021) Sun, W., Jiang, J., Huang, Y., Li, J., Zhang, M.: An integrated PCA DAEGCN model for movie recommendation in the social Internet of Things. IEEE IoT J. (2021)
19.
go back to reference Nassar, N., Jafar, A., Rahhal, Y.: A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl.-Based Syst. 187, 104811 (2020)CrossRef Nassar, N., Jafar, A., Rahhal, Y.: A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl.-Based Syst. 187, 104811 (2020)CrossRef
21.
go back to reference Chamchong, R., Wong, K.W.: Multi-disciplinary Trends in Artificial Intelligence: 13th International Conference, MIWAI 2019, Kuala Lumpur, Malaysia, November 17–19, 2019, Proceedings, vol. 11909. Springer Nature (2019) Chamchong, R., Wong, K.W.: Multi-disciplinary Trends in Artificial Intelligence: 13th International Conference, MIWAI 2019, Kuala Lumpur, Malaysia, November 17–19, 2019, Proceedings, vol. 11909. Springer Nature (2019)
22.
go back to reference Achmad, K.A., Nugroho, L.E., Diunaedi, A., Widyawan.: Context based-tourism recommender system: towards tourists’ context-sensitive preference conceptual model. In: 2018 4th International Conference on Science and Technology (ICST), pp. 1–6. IEEE (2018) Achmad, K.A., Nugroho, L.E., Diunaedi, A., Widyawan.: Context based-tourism recommender system: towards tourists’ context-sensitive preference conceptual model. In: 2018 4th International Conference on Science and Technology (ICST), pp. 1–6. IEEE (2018)
23.
go back to reference Wang, X., Gu, B., Ren, Y., Ye, W., Yu, S., Xiang, Y., Gao, L.: A fog-based recommender system. IEEE IoT J. 7(2), 1048–1060 (2019) Wang, X., Gu, B., Ren, Y., Ye, W., Yu, S., Xiang, Y., Gao, L.: A fog-based recommender system. IEEE IoT J. 7(2), 1048–1060 (2019)
24.
25.
go back to reference Vijayakumar, V., Vairavasundaram, S., Logesh, R., Sivapathi, A.: Effective knowledge based recommender system for tailored multiple point of interest recommendation. Int. J. Web Portals (IJWP) 11(1), 1–18 (2019)CrossRef Vijayakumar, V., Vairavasundaram, S., Logesh, R., Sivapathi, A.: Effective knowledge based recommender system for tailored multiple point of interest recommendation. Int. J. Web Portals (IJWP) 11(1), 1–18 (2019)CrossRef
26.
go back to reference Fernández-García, A.J., Rodríguez-Echeverría, R., Preciado, J.C., Manzano, J.M.C., Sánchez-Figueroa, F.: Creating a recommender system to support higher education students in the subject enrollment decision. IEEE Access 8, 189069–189088 (2020)CrossRef Fernández-García, A.J., Rodríguez-Echeverría, R., Preciado, J.C., Manzano, J.M.C., Sánchez-Figueroa, F.: Creating a recommender system to support higher education students in the subject enrollment decision. IEEE Access 8, 189069–189088 (2020)CrossRef
27.
go back to reference Wu, H., Zhang, Z., Yue, K., Zhang, B., He, J., Sun, L.: Dual-regularized matrix factorization with deep neural networks for recommender systems. Knowl.-Based Syst. 145, 46–58 (2018)CrossRef Wu, H., Zhang, Z., Yue, K., Zhang, B., He, J., Sun, L.: Dual-regularized matrix factorization with deep neural networks for recommender systems. Knowl.-Based Syst. 145, 46–58 (2018)CrossRef
28.
go back to reference Ahuja, R., Solanki, A., Nayyar, A.: Movie recommender system using K-Means clustering and K-Nearest Neighbor. In: 2019 9th International Conference on Cloud Computing, Data Science and Engineering (Confluence), pp. 263–268. IEEE (2019) Ahuja, R., Solanki, A., Nayyar, A.: Movie recommender system using K-Means clustering and K-Nearest Neighbor. In: 2019 9th International Conference on Cloud Computing, Data Science and Engineering (Confluence), pp. 263–268. IEEE (2019)
Metadata
Title
Reducing Data Sparsity in Movie Recommendation System
Authors
Aamir Fareed
Saima Hassan
Samir Brahim Belhaouari
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_33

Premium Partner