Skip to main content
Top

2017 | OriginalPaper | Chapter

Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage

Authors : J. Marcelo Ketzer, Rodrigo S. Iglesias, Sandra Einloft

Published in: Handbook of Climate Change Mitigation and Adaptation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CO2 capture and geological storage (CCS) is one of the most promising technologies to reduce greenhouse gas emissions and mitigate climate change in a fossil fuel-dependent world. If fully implemented, CCS may contribute to reduce 20 % of global emissions from fossil fuels by 2050 and 55 % by the end of this century. The complete CCS chain consists of capturing CO2 from large stationary sources such as coal-fired power plants and heavy industries and transport and store it in appropriate geological reservoirs such as petroleum fields, saline aquifers, and coal seams, therefore returning carbon emitted from fossil fuels (as CO2) back to geological sinks.
Recent studies have shown that geological reservoirs can safely store for many centuries the entire greenhouse gas (GHG) global emissions. In this chapter, we present a comprehensive summary of the latest advances in CCS research and technologies that can be used to store significant quantities of CO2 for geological periods of time and therefore considerably contribute to GHG emission reduction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abad A, Mattisson T, Lyngfelt A, Rydén M (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85:1174–1185. doi:10.1016/j.fuel.2005.11.014CrossRef Abad A, Mattisson T, Lyngfelt A, Rydén M (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85:1174–1185. doi:10.1016/j.fuel.2005.11.014CrossRef
go back to reference Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110:15059–15062. doi:10.1021/jp063547uCrossRef Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110:15059–15062. doi:10.1021/jp063547uCrossRef
go back to reference Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109:6366–6374. doi:10.1021/jp046404lCrossRef Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109:6366–6374. doi:10.1021/jp046404lCrossRef
go back to reference Arts R, Winthaegen P (2005) Monitoring options for CO2 storage. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, vol 2. Elsevier, Amsterdam, pp 1001–1014CrossRef Arts R, Winthaegen P (2005) Monitoring options for CO2 storage. In: Benson SM (ed) Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, vol 2. Elsevier, Amsterdam, pp 1001–1014CrossRef
go back to reference Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289CrossRef Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289CrossRef
go back to reference Bachu S, Bonijoly D, Bradshaw J et al (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1:430–443CrossRef Bachu S, Bonijoly D, Bradshaw J et al (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1:430–443CrossRef
go back to reference Baines SJ, Worden RH (2004) The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. In: Baines SJ, Worden RH (eds) Geological storage on carbon dioxide. Geological Society, London, pp 59–85 Baines SJ, Worden RH (2004) The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. In: Baines SJ, Worden RH (eds) Geological storage on carbon dioxide. Geological Society, London, pp 59–85
go back to reference Bara JE, Camper DE, Gin DL, Noble RD (2009a) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159. doi:10.1021/ar9001747CrossRef Bara JE, Camper DE, Gin DL, Noble RD (2009a) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159. doi:10.1021/ar9001747CrossRef
go back to reference Bara JE, Carlisle TK, Gabriel CJ et al (2009b) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48:2739–2751. doi:10.1021/ie8016237CrossRef Bara JE, Carlisle TK, Gabriel CJ et al (2009b) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48:2739–2751. doi:10.1021/ie8016237CrossRef
go back to reference Beck B, Cunha P, Ketzer M et al (2011) The current status of CCS development in Brazil. Energy Procedia 4:6148–6151. doi:10.1016/j.egypro.2011.02.623CrossRef Beck B, Cunha P, Ketzer M et al (2011) The current status of CCS development in Brazil. Energy Procedia 4:6148–6151. doi:10.1016/j.egypro.2011.02.623CrossRef
go back to reference Benson S (2007) Monitoring geological storage of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 73–100 Benson S (2007) Monitoring geological storage of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 73–100
go back to reference Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4:325–331CrossRef Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4:325–331CrossRef
go back to reference Bentham M, Kirby G (2005) CO2 storage in saline aquifers. Oil Gas Sci Technol L Inst Fr Du Pet 60:559–567CrossRef Bentham M, Kirby G (2005) CO2 storage in saline aquifers. Oil Gas Sci Technol L Inst Fr Du Pet 60:559–567CrossRef
go back to reference Blasig A, Tang J, Hu X et al (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80. doi:10.1016/j.fluid.2007.03.007CrossRef Blasig A, Tang J, Hu X et al (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80. doi:10.1016/j.fluid.2007.03.007CrossRef
go back to reference Blomen E, Hendriks C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1:1505–1512. doi:10.1016/j.egypro.2009.01.197CrossRef Blomen E, Hendriks C, Neele F (2009) Capture technologies: improvements and promising developments. Energy Procedia 1:1505–1512. doi:10.1016/j.egypro.2009.01.197CrossRef
go back to reference Blunt M, Fayers FJ, Orr FM Jr (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manag 34:1197–1204. doi:10.1016/0196-8904(93)90069-mCrossRef Blunt M, Fayers FJ, Orr FM Jr (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manag 34:1197–1204. doi:10.1016/0196-8904(93)90069-mCrossRef
go back to reference Bradshaw J, Bachu S, Bonijoly D et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1:62–68CrossRef Bradshaw J, Bachu S, Bonijoly D et al (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1:62–68CrossRef
go back to reference Carvalho PJ, Álvarez VH, Machado JJB et al (2009) High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Supercrit Fluids 48:99–107. doi:10.1016/j.supflu.2008.10.012CrossRef Carvalho PJ, Álvarez VH, Machado JJB et al (2009) High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Supercrit Fluids 48:99–107. doi:10.1016/j.supflu.2008.10.012CrossRef
go back to reference Corbella BM, de Diego L, García-Labiano F et al (2005) Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy & Fuels 20:148–154. doi:10.1021/ef050212nCrossRef Corbella BM, de Diego L, García-Labiano F et al (2005) Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy & Fuels 20:148–154. doi:10.1021/ef050212nCrossRef
go back to reference Day S, Fry R, Sakurovs R, Weir S (2010) Swelling of coals by supercritical gases and its relationship to sorption. Energy & Fuels 24:2777–2783. doi:10.1021/ef901588hCrossRef Day S, Fry R, Sakurovs R, Weir S (2010) Swelling of coals by supercritical gases and its relationship to sorption. Energy & Fuels 24:2777–2783. doi:10.1021/ef901588hCrossRef
go back to reference De Diego LF, Gayan P, Garcia-Labiano F et al (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration. Energy & Fuels 19:1850–1856. doi:10.1021/ef050052fCrossRef De Diego LF, Gayan P, Garcia-Labiano F et al (2005) Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration. Energy & Fuels 19:1850–1856. doi:10.1021/ef050052fCrossRef
go back to reference Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. Int J Greenh Gas Control 4:152–160. doi:10.1016/j.ijggc.2009.10.018CrossRef Feron PHM (2010) Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. Int J Greenh Gas Control 4:152–160. doi:10.1016/j.ijggc.2009.10.018CrossRef
go back to reference Feron PHM, Hendriks CA (2005) Les différents procédés de capture du CO2 et leurs coûts. Oil Gas Sci Technol – Rev IFP 60:451–459CrossRef Feron PHM, Hendriks CA (2005) Les différents procédés de capture du CO2 et leurs coûts. Oil Gas Sci Technol – Rev IFP 60:451–459CrossRef
go back to reference Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology – The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20. doi:10.1016/s1750-5836(07)00094-1CrossRef Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology – The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20. doi:10.1016/s1750-5836(07)00094-1CrossRef
go back to reference Franz J, Scherer V (2010) An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J Memb Sci 265:9. doi:10.1016/j.memsci.2010.01.047 Franz J, Scherer V (2010) An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. J Memb Sci 265:9. doi:10.1016/j.memsci.2010.01.047
go back to reference Gale J, Freund P (2001) Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ Geosci 8:210–217CrossRef Gale J, Freund P (2001) Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ Geosci 8:210–217CrossRef
go back to reference García-Pérez E, Parra JB, Ania CO et al (2007) A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13:469–476. doi:10.1007/s10450-007-9039-zCrossRef García-Pérez E, Parra JB, Ania CO et al (2007) A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13:469–476. doi:10.1007/s10450-007-9039-zCrossRef
go back to reference Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73–89. doi:10.1016/j.ijggc.2009.09.015CrossRef Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73–89. doi:10.1016/j.ijggc.2009.09.015CrossRef
go back to reference GCCSI (2011) Accelerating the uptake of CCS: industrial use of captured carbon dioxide. Global CCS Institute, Canberra GCCSI (2011) Accelerating the uptake of CCS: industrial use of captured carbon dioxide. Global CCS Institute, Canberra
go back to reference GCSSI (2014) The global status of CCS. Global CCS Institute, Canberra GCSSI (2014) The global status of CCS. Global CCS Institute, Canberra
go back to reference Gozalpour F, Ren SR, Tohidi B (2005) CO2 EOR and storage in oil reservoirs. Oil Gas Sci Technol L Inst Fr Du Pet 60:537–546CrossRef Gozalpour F, Ren SR, Tohidi B (2005) CO2 EOR and storage in oil reservoirs. Oil Gas Sci Technol L Inst Fr Du Pet 60:537–546CrossRef
go back to reference Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London, pp 129–145 Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. Geological Society, London, pp 129–145
go back to reference Hicks JC, Drese JH, Fauth DJ et al (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130:2902–2903. doi:10.1021/ja077795vCrossRef Hicks JC, Drese JH, Fauth DJ et al (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130:2902–2903. doi:10.1021/ja077795vCrossRef
go back to reference Holt T, Jensen JI, Lindeberg E (1995) Underground storage of CO2 in aquifers and oil reservoirs. Energy Convers Manag 36:535–538CrossRef Holt T, Jensen JI, Lindeberg E (1995) Underground storage of CO2 in aquifers and oil reservoirs. Energy Convers Manag 36:535–538CrossRef
go back to reference IEA (2008a) Energy technology perspectives: scenarios and strategies to 2050. International Energy Agency, Paris IEA (2008a) Energy technology perspectives: scenarios and strategies to 2050. International Energy Agency, Paris
go back to reference IEA (2008b) CO2 capture and storage: a key carbon abatement option. International Energy Agency, Paris IEA (2008b) CO2 capture and storage: a key carbon abatement option. International Energy Agency, Paris
go back to reference IEA (2009) Technology roadmap – carbon capture and storage. International Energy Agency, Paris IEA (2009) Technology roadmap – carbon capture and storage. International Energy Agency, Paris
go back to reference IEA (2012) Energy technology perspectives. International Energy Agency, Paris IEA (2012) Energy technology perspectives. International Energy Agency, Paris
go back to reference IEA (2013) Technology roadmap – carbon capture and storage. International Energy Agency, Paris IEA (2013) Technology roadmap – carbon capture and storage. International Energy Agency, Paris
go back to reference IEA Greenhouse Gas R&D Programme (2001) Putting carbon back into the ground. In: Davidson J, Freud P, Smith A (eds). IEA Greenhouse Gas R&D Programme, Paris IEA Greenhouse Gas R&D Programme (2001) Putting carbon back into the ground. In: Davidson J, Freud P, Smith A (eds). IEA Greenhouse Gas R&D Programme, Paris
go back to reference IEA Greenhouse Gas R&D Programme (2004) IEA GHG Weyburn CO2 monitoring & storage. Petroleum Technology Research Centre, Regina, Canada IEA Greenhouse Gas R&D Programme (2004) IEA GHG Weyburn CO2 monitoring & storage. Petroleum Technology Research Centre, Regina, Canada
go back to reference IPCC (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK IPCC (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK
go back to reference IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York
go back to reference Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. doi:10.1016/j.applthermaleng.2009.05.005CrossRef Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. doi:10.1016/j.applthermaleng.2009.05.005CrossRef
go back to reference Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200°C and 200 bars: implications for geologic sequestration of carbon. Appl Geochemistry 18:1065–1080. doi:10.1016/s0883-2927(02)00239-1CrossRef Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200°C and 200 bars: implications for geologic sequestration of carbon. Appl Geochemistry 18:1065–1080. doi:10.1016/s0883-2927(02)00239-1CrossRef
go back to reference Kaszuba J, Yardley B, Andreani M (2013) Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Rev Mineral Geochemistry 77:153–188CrossRef Kaszuba J, Yardley B, Andreani M (2013) Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Rev Mineral Geochemistry 77:153–188CrossRef
go back to reference Katz DL, Tek MR (1981) Overview of underground storage of natural gas. J Pet Technol 33:943–951CrossRef Katz DL, Tek MR (1981) Overview of underground storage of natural gas. J Pet Technol 33:943–951CrossRef
go back to reference Ketzer JM, Iglesias R, Einloft S et al (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl Geochemistry 24:760–767. doi:10.1016/j.apgeochem.2009.01.001CrossRef Ketzer JM, Iglesias R, Einloft S et al (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl Geochemistry 24:760–767. doi:10.1016/j.apgeochem.2009.01.001CrossRef
go back to reference Kong Y, Jiang G, Fan M et al (2014) A new aerogel based CO2 adsorbent developed using a simple sol–gel method along with supercritical drying. Chem Commun 50:12158–12161. doi:10.1039/C4CC06424KCrossRef Kong Y, Jiang G, Fan M et al (2014) A new aerogel based CO2 adsorbent developed using a simple sol–gel method along with supercritical drying. Chem Commun 50:12158–12161. doi:10.1039/C4CC06424KCrossRef
go back to reference Korbøl R, Kaddour A (1995) Sleipner vest CO2 disposal – injection of removed CO2 into the utsira formation. Energy Convers Manag 36:509–512CrossRef Korbøl R, Kaddour A (1995) Sleipner vest CO2 disposal – injection of removed CO2 into the utsira formation. Energy Convers Manag 36:509–512CrossRef
go back to reference Kothandaraman A, Nord L, Bolland O et al (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1:1373–1380. doi:10.1016/j.egypro.2009.01.180CrossRef Kothandaraman A, Nord L, Bolland O et al (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1:1373–1380. doi:10.1016/j.egypro.2009.01.180CrossRef
go back to reference Kumar S, Cho JH, Moon I (2014) Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology – a review. Int J Greenh Gas Control 20:87–116. doi:10.1016/j.ijggc.2013.10.019CrossRef Kumar S, Cho JH, Moon I (2014) Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology – a review. Int J Greenh Gas Control 20:87–116. doi:10.1016/j.ijggc.2013.10.019CrossRef
go back to reference Lasaga AC (1984) Chemical kinetics of water-rock interactions. J Geophys Res 89:4009–4025. doi:10.1029/JB089iB06p04009CrossRef Lasaga AC (1984) Chemical kinetics of water-rock interactions. J Geophys Res 89:4009–4025. doi:10.1029/JB089iB06p04009CrossRef
go back to reference Le Quéré C, Moriarty R, Andrew RM et al (2014) Global carbon budget 2014. Earth Syst Sci Data Discuss 7:521–610. doi:10.5194/essdd-7-521-2014CrossRef Le Quéré C, Moriarty R, Andrew RM et al (2014) Global carbon budget 2014. Earth Syst Sci Data Discuss 7:521–610. doi:10.5194/essdd-7-521-2014CrossRef
go back to reference Lepaumier H, Picq D, Carrette PL (2009) Degradation study of new solvents for CO2 capture in post-combustion. Energy Procedia 1:893–900. doi:10.1016/j.egypro.2009.01.119CrossRef Lepaumier H, Picq D, Carrette PL (2009) Degradation study of new solvents for CO2 capture in post-combustion. Energy Procedia 1:893–900. doi:10.1016/j.egypro.2009.01.119CrossRef
go back to reference Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447. doi:10.1016/j.apenergy.2012.09.009CrossRef Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447. doi:10.1016/j.apenergy.2012.09.009CrossRef
go back to reference Luquot L, Gouze P (2009) Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem Geol 265:148–159. doi:10.1016/j.chemgeo.2009.03.028CrossRef Luquot L, Gouze P (2009) Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem Geol 265:148–159. doi:10.1016/j.chemgeo.2009.03.028CrossRef
go back to reference Magalhaes TO, Aquino AS, Vecchia FD et al (2014) Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Adv 4:18164–18170. doi:10.1039/C4RA00071DCrossRef Magalhaes TO, Aquino AS, Vecchia FD et al (2014) Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Adv 4:18164–18170. doi:10.1039/C4RA00071DCrossRef
go back to reference Markewitz P, Kuckshinrichs W, Leitner W et al (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305. doi:10.1039/C2EE03403DCrossRef Markewitz P, Kuckshinrichs W, Leitner W et al (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305. doi:10.1039/C2EE03403DCrossRef
go back to reference Millward AR, Yaghi OM (2005) Metal−Organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999. doi:10.1021/ja0570032CrossRef Millward AR, Yaghi OM (2005) Metal−Organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999. doi:10.1021/ja0570032CrossRef
go back to reference Muldoon MJ, Aki SNVK, Anderson JL et al (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009. doi:10.1021/jp071897qCrossRef Muldoon MJ, Aki SNVK, Anderson JL et al (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009. doi:10.1021/jp071897qCrossRef
go back to reference NEA (2008) Moving forward with geological disposal of radioactive waste. Nuclear Energy Agency, Paris NEA (2008) Moving forward with geological disposal of radioactive waste. Nuclear Energy Agency, Paris
go back to reference Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRef Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972CrossRef
go back to reference Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction for application to geochemical modeling. U.S. Geological Survey, Menlo Park, CA Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction for application to geochemical modeling. U.S. Geological Survey, Menlo Park, CA
go back to reference Pannocchia G, Puccini M, Seggiani M, Vitolo S (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res 46:6696–6706. doi:10.1021/ie0616949CrossRef Pannocchia G, Puccini M, Seggiani M, Vitolo S (2007) Experimental and modeling studies on high-temperature capture of CO2 using lithium zirconate based sorbents. Ind Eng Chem Res 46:6696–6706. doi:10.1021/ie0616949CrossRef
go back to reference Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources Investigations Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources Investigations
go back to reference Pearce JM (1996) Natural occurrences as analogues for the geological disposal of carbon. Fuel Energy Abstr 37:305. doi:10.1016/0140-6701(96)82690-7 Pearce JM (1996) Natural occurrences as analogues for the geological disposal of carbon. Fuel Energy Abstr 37:305. doi:10.1016/0140-6701(96)82690-7
go back to reference Pennline HW, Luebke DR, Jones KL et al (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Technol 89:897–907. doi:10.1016/j.fuproc.2008.02.002CrossRef Pennline HW, Luebke DR, Jones KL et al (2008) Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process Technol 89:897–907. doi:10.1016/j.fuproc.2008.02.002CrossRef
go back to reference Perinu C, Arstad B, Jens K-J (2014) NMR spectroscopy applied to amine–CO2–H2O systems relevant for post-combustion CO2 capture: a review. Int J Greenh Gas Control 20:230–243. doi:10.1016/j.ijggc.2013.10.029CrossRef Perinu C, Arstad B, Jens K-J (2014) NMR spectroscopy applied to amine–CO2–H2O systems relevant for post-combustion CO2 capture: a review. Int J Greenh Gas Control 20:230–243. doi:10.1016/j.ijggc.2013.10.029CrossRef
go back to reference Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Memb Sci 279:1–49. doi:10.1016/j.memsci.2005.12.062CrossRef Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Memb Sci 279:1–49. doi:10.1016/j.memsci.2005.12.062CrossRef
go back to reference Pruess K, Garcia J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42:282–295. doi:10.1007/s00254-001-0498-3CrossRef Pruess K, Garcia J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42:282–295. doi:10.1007/s00254-001-0498-3CrossRef
go back to reference Puxty G, Rowland R, Allport A et al (2009) Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43:6427–6433. doi:10.1021/es901376aCrossRef Puxty G, Rowland R, Allport A et al (2009) Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol 43:6427–6433. doi:10.1021/es901376aCrossRef
go back to reference Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family. J Chem Eng Data 54:382–386. doi:10.1021/je800433rCrossRef Raeissi S, Peters CJ (2008) Carbon dioxide solubility in the homologous 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family. J Chem Eng Data 54:382–386. doi:10.1021/je800433rCrossRef
go back to reference Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177. doi:10.1021/ie3003705CrossRef Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-art of CO2 capture with ionic liquids. Ind Eng Chem Res 51:8149–8177. doi:10.1021/ie3003705CrossRef
go back to reference Reeves SR, Schoeling L (2001) Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance, and economics. In: Williams DJ, Durie RA, McMUllan P, et al (eds) Fifth international conference greenhouse gas control technologies. CSIRO Publishing, Cairns, pp 593–598 Reeves SR, Schoeling L (2001) Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance, and economics. In: Williams DJ, Durie RA, McMUllan P, et al (eds) Fifth international conference greenhouse gas control technologies. CSIRO Publishing, Cairns, pp 593–598
go back to reference Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21:5427–5449. doi:10.1007/s11356-013-2406-2CrossRef Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21:5427–5449. doi:10.1007/s11356-013-2406-2CrossRef
go back to reference Samanta A, Zhao A, Shimizu GKH et al (2011) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51:1438–1463. doi:10.1021/ie200686qCrossRef Samanta A, Zhao A, Shimizu GKH et al (2011) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51:1438–1463. doi:10.1021/ie200686qCrossRef
go back to reference Scherer GW, Celia MA, Prévost J-H et al (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, vol 2. Elsevier, Amsterdam, pp 827–848CrossRef Scherer GW, Celia MA, Prévost J-H et al (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Carbon dioxide capture for storage in deep geologic formations: results from the CO2 capture project, vol 2. Elsevier, Amsterdam, pp 827–848CrossRef
go back to reference Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes. J Memb Sci 238:57–63. doi:10.1016/j.memsci.2004.02.033CrossRef Scovazzo P, Kieft J, Finan DA et al (2004) Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes. J Memb Sci 238:57–63. doi:10.1016/j.memsci.2004.02.033CrossRef
go back to reference Shin E-K, Lee B-C (2008) High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Eng Data 53:2728–2734. doi:10.1021/je8000443CrossRef Shin E-K, Lee B-C (2008) High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Eng Data 53:2728–2734. doi:10.1021/je8000443CrossRef
go back to reference Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet Sci Lett 240:539–558. doi:10.1016/j.epsl.2005.09.017CrossRef Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet Sci Lett 240:539–558. doi:10.1016/j.epsl.2005.09.017CrossRef
go back to reference Stevens SH, Fox CE, Melzer LS (2000) McElmo Dome and ST. Johns natural CO2 deposits: analogs for carbon sequestration. GHGT-5 Stevens SH, Fox CE, Melzer LS (2000) McElmo Dome and ST. Johns natural CO2 deposits: analogs for carbon sequestration. GHGT-5
go back to reference Stevens SH, Kuuskraa VA, Gale J, Beecy D (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8:200–209CrossRef Stevens SH, Kuuskraa VA, Gale J, Beecy D (2001) CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 8:200–209CrossRef
go back to reference Supasitmongkol S, Styring P (2010) High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid). Energy Environ Sci 3:1961–1972. doi:10.1039/C0EE00293CCrossRef Supasitmongkol S, Styring P (2010) High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid). Energy Environ Sci 3:1961–1972. doi:10.1039/C0EE00293CCrossRef
go back to reference Taber JJ, Martin FD, Seright RS (1997a) EOR screening criteria revisited – part 1: introduction to screening criteria and enhanced recovery field projects. Soc Pet Eng Res Eng 12(3):9 Taber JJ, Martin FD, Seright RS (1997a) EOR screening criteria revisited – part 1: introduction to screening criteria and enhanced recovery field projects. Soc Pet Eng Res Eng 12(3):9
go back to reference Taber JJ, Martin FD, Seright RS (1997b) EOR screening criteria revisited – part 2: applications and impact of oil prices. Soc Pet Eng Res Eng 12(3):6 Taber JJ, Martin FD, Seright RS (1997b) EOR screening criteria revisited – part 2: applications and impact of oil prices. Soc Pet Eng Res Eng 12(3):6
go back to reference Tang J, Sun W, Tang H et al (2005a) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039. doi:10.1021/ma047574zCrossRef Tang J, Sun W, Tang H et al (2005a) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039. doi:10.1021/ma047574zCrossRef
go back to reference Tang J, Tang H, Sun W et al (2005b) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 5:3325–3327 Tang J, Tang H, Sun W et al (2005b) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 5:3325–3327
go back to reference Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the sleipner and SACS projects. Energy 29:1361–1369. doi:10.1016/j.energy.2004.03.104CrossRef Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the sleipner and SACS projects. Energy 29:1361–1369. doi:10.1016/j.energy.2004.03.104CrossRef
go back to reference Tsang C-F, Doughty C, Rutqvist J, Xu T (2007) Modeling to understand and simulate physico-chemical processes of CO2 geological storage. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 35–72 Tsang C-F, Doughty C, Rutqvist J, Xu T (2007) Modeling to understand and simulate physico-chemical processes of CO2 geological storage. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 35–72
go back to reference Van Bergen F, Gale J, Damen KJ, Wildenborg AFB (2004) Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production. Energy 29:1611–1621. doi:10.1016/j.energy.2004.03.063CrossRef Van Bergen F, Gale J, Damen KJ, Wildenborg AFB (2004) Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production. Energy 29:1611–1621. doi:10.1016/j.energy.2004.03.063CrossRef
go back to reference Walton KS, Abney MB, Douglas LeVan M (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91:78–84. doi:10.1016/j.micromeso.2005.11.023CrossRef Walton KS, Abney MB, Douglas LeVan M (2006) CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater 91:78–84. doi:10.1016/j.micromeso.2005.11.023CrossRef
go back to reference Wang Q, Luo J, Zhong Z, Borgna A (2011a) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55. doi:10.1039/C0EE00064GCrossRef Wang Q, Luo J, Zhong Z, Borgna A (2011a) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55. doi:10.1039/C0EE00064GCrossRef
go back to reference Wang C, Luo X, Luo H et al (2011b) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chemie Int Ed 50:4918–4922. doi:10.1002/anie.201008151CrossRef Wang C, Luo X, Luo H et al (2011b) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chemie Int Ed 50:4918–4922. doi:10.1002/anie.201008151CrossRef
go back to reference Wang J, Huang L, Yang R et al (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7:3478–3518. doi:10.1039/C4EE01647ECrossRef Wang J, Huang L, Yang R et al (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7:3478–3518. doi:10.1039/C4EE01647ECrossRef
go back to reference Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. doi:10.1016/j.ccr.2004.04.015CrossRef Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. doi:10.1016/j.ccr.2004.04.015CrossRef
go back to reference Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 101–126 Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration: integrating technology, monitoring, regulation. Blackwell, Ames, pp 101–126
go back to reference Xiong Y-B, Wang H, Wang Y-J, Wang R-M (2012) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23:835–840. doi:10.1002/pat.1973CrossRef Xiong Y-B, Wang H, Wang Y-J, Wang R-M (2012) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23:835–840. doi:10.1002/pat.1973CrossRef
go back to reference Xu X, Song C, Andrésen JM et al (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62:29–45. doi:10.1016/s1387-1811(03)00388-3CrossRef Xu X, Song C, Andrésen JM et al (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62:29–45. doi:10.1016/s1387-1811(03)00388-3CrossRef
go back to reference Xu TF, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT – a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165. doi:10.1016/j.cageo.2005.06.014CrossRef Xu TF, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT – a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165. doi:10.1016/j.cageo.2005.06.014CrossRef
go back to reference Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27. doi:10.1016/s1001-0742(08)60002-9CrossRef Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27. doi:10.1016/s1001-0742(08)60002-9CrossRef
go back to reference Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer (Guildf) 52:1469–1482. doi:10.1016/j.polymer.2011.01.043CrossRef Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer (Guildf) 52:1469–1482. doi:10.1016/j.polymer.2011.01.043CrossRef
go back to reference Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036. doi:10.1016/j.progpolymsci.2013.04.002CrossRef Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036. doi:10.1016/j.progpolymsci.2013.04.002CrossRef
go back to reference Zhang J, Singh R, Webley PA (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111:478–487. doi:10.1016/j.micromeso.2007.08.022CrossRef Zhang J, Singh R, Webley PA (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111:478–487. doi:10.1016/j.micromeso.2007.08.022CrossRef
go back to reference Zhao L, Riensche E, Menzer R et al (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Memb Sci 325:284–294. doi:10.1016/j.memsci.2008.07.058CrossRef Zhao L, Riensche E, Menzer R et al (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Memb Sci 325:284–294. doi:10.1016/j.memsci.2008.07.058CrossRef
Metadata
Title
Reducing Greenhouse Gas Emissions with CO2 Capture and Geological Storage
Authors
J. Marcelo Ketzer
Rodrigo S. Iglesias
Sandra Einloft
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-14409-2_37