Skip to main content
Top
Published in: Wireless Networks 3/2020

26-10-2018

Reducing the total cost of ownership in radio access networks by using renewable energy resources

Authors: Turgay Pamuklu, Cem Ersoy

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increasing electricity prices motivates the mobile network operators to find new energy-efficient solutions for radio access networks (RANs). In this study, we focus on a specific type of RAN where the stand-alone solar panels are used as alternative energy sources to the electrical grid energy. First, we describe this hybrid energy based radio access network (HEBRAN) and formulate an optimization problem which aims to reduce the total cost of ownership of this network. Then, we propose a framework that provides a cost-efficient algorithm for choosing the proper size for the solar panels and batteries of a HEBRAN and two novel switch on/off algorithms which regulate the consumption of grid electricity during the operation of the network. In addition, we create a reduced model of the HEBRAN optimization problem to solve it in a mixed integer linear programming (MILP) solver. The results show that our algorithms outperform the MILP solution and classical switch on/off methods. Moreover, our findings show that migrating to a HEBRAN system is feasible and has cost-benefits for mobile network operators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We have to clarify that in this paper, we use the “solar panel size”clause to define the energy generating capacity of this panel.
 
2
The unstored energy is the harvested energy by a solar panel but could not be stored in a battery due to fully charged state of this battery.
 
3
We should notice that the size of the solar panels and the batteries in Figs. 11 and 12 are determined by using the sizing heuristic algorithm. Also, the results are the average of ten instances in each test configuration.
 
4
Hybrid algorithm surpasses the traffic aware algorithm in all instances for any traffic rate. Figures of other traffic rates are omitted due to the lack of space.
 
5
We should have noticed that all test cases have been executed on a super computer (Nvidia DGX-1 Station [50]) with a Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz.
 
6
As it was mentioned before, the hybrid algorithm outperforms the other two algorithms in any test case. Therefore we demonstrates only the sizing results that use the hybrid algorithm as an online algorithm.
 
7
Our heuristic surpasses the MILP solution in all instances for any traffic rate. Figures of other traffic rates are omitted due to the lack of space.
 
8
Therefore we can bypass the effect of solar radiation rate on the results.
 
Literature
2.
go back to reference Pachauri, R. K. & Reisinger, A. (2007). Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, Technical report. Pachauri, R. K. & Reisinger, A. (2007). Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, Technical report.
3.
go back to reference European Commission. (2013). EU Energy, Transport and GHG Emissions: Trends to 2050-Reference Scenario 2013. European Commission. (2013). EU Energy, Transport and GHG Emissions: Trends to 2050-Reference Scenario 2013.
4.
go back to reference Quaschning, V. (2009). Renewable energy and climate change. London: Wiley. Quaschning, V. (2009). Renewable energy and climate change. London: Wiley.
5.
go back to reference Oh, E., Krishnamachari, B., Liu, X., & Niu, Z. (2011). Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Communications Magazine, 49, 56–61.CrossRef Oh, E., Krishnamachari, B., Liu, X., & Niu, Z. (2011). Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Communications Magazine, 49, 56–61.CrossRef
6.
go back to reference Wu, J., Zhang, Y., Zukerman, M., & Yung, E. K.-N. (2015). Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE Communications Surveys and Tutorials, 17(2), 803–826.CrossRef Wu, J., Zhang, Y., Zukerman, M., & Yung, E. K.-N. (2015). Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE Communications Surveys and Tutorials, 17(2), 803–826.CrossRef
7.
go back to reference Pamuklu, T., & Ersoy, C. (2013, Aug). Optimization of renewable green base station deployment. In 2013 IEEE international conference on green computing and communications and IEEE internet of things and IEEE cyber, physical and social computing (pp. 59–63). IEEE. Pamuklu, T., & Ersoy, C. (2013, Aug). Optimization of renewable green base station deployment. In 2013 IEEE international conference on green computing and communications and IEEE internet of things and IEEE cyber, physical and social computing (pp. 59–63). IEEE.
8.
go back to reference Yigitel, M. A., Incel, O. D., & Ersoy, C. (2014). Dynamic base station planning with power adaptation for green wireless cellular networks. EURASIP Journal on Wireless Communications and Networking, 2014, 77.CrossRef Yigitel, M. A., Incel, O. D., & Ersoy, C. (2014). Dynamic base station planning with power adaptation for green wireless cellular networks. EURASIP Journal on Wireless Communications and Networking, 2014, 77.CrossRef
9.
go back to reference Son, K., Oh, E., & Krishnamachari, B. (2011, April). Energy-aware hierarchical cell configuration: From deployment to operation. In 2011 IEEE international conference on pervasive computing and communications work (INFOCOM WKSHPS) (pp. 289–294). IEEE. Son, K., Oh, E., & Krishnamachari, B. (2011, April). Energy-aware hierarchical cell configuration: From deployment to operation. In 2011 IEEE international conference on pervasive computing and communications work (INFOCOM WKSHPS) (pp. 289–294). IEEE.
10.
go back to reference Yildiz, A., Girici, T., & Yanikomeroglu, H. (2013, June). A pricing based algorithm for cell switching off in green cellular networks. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–6). IEEE. Yildiz, A., Girici, T., & Yanikomeroglu, H. (2013, June). A pricing based algorithm for cell switching off in green cellular networks. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–6). IEEE.
11.
go back to reference Zhang, H., Cai, J., & Li, X. (2013). Energy-efficient base station control with dynamic clustering in cellular network. In 2013 8th International conference on communications and networking in China (pp. 384–388). IEEE. Zhang, H., Cai, J., & Li, X. (2013). Energy-efficient base station control with dynamic clustering in cellular network. In 2013 8th International conference on communications and networking in China (pp. 384–388). IEEE.
12.
go back to reference Al Haj Hassan, H., Nuaymi, L., & Pelov, A. (2013, Sept). Classification of renewable energy scenarios and objectives for cellular networks. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (pp. 2967–2972). IEEE. Al Haj Hassan, H., Nuaymi, L., & Pelov, A. (2013, Sept). Classification of renewable energy scenarios and objectives for cellular networks. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (pp. 2967–2972). IEEE.
13.
go back to reference Han, T., & Ansari, N. (2013). On optimizing green energy utilization for cellular networks with hybrid energy supplies. IEEE Transactions on Wireless Communications, 12, 3872–3882.CrossRef Han, T., & Ansari, N. (2013). On optimizing green energy utilization for cellular networks with hybrid energy supplies. IEEE Transactions on Wireless Communications, 12, 3872–3882.CrossRef
14.
go back to reference Carreno, M., & Nuaymi, L. (2013, June). Renewable energy use in cellular networks. In: 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–6). IEEE. Carreno, M., & Nuaymi, L. (2013, June). Renewable energy use in cellular networks. In: 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–6). IEEE.
15.
go back to reference Farooq, M. J., Ghazzai, H., Kadri, A., ElSawy, H., & Alouini, M.-S. (2017). A hybrid energy sharing framework for green cellular networks. IEEE Transactions on Communications, 65, 918–934.CrossRef Farooq, M. J., Ghazzai, H., Kadri, A., ElSawy, H., & Alouini, M.-S. (2017). A hybrid energy sharing framework for green cellular networks. IEEE Transactions on Communications, 65, 918–934.CrossRef
16.
go back to reference Sheng, M., Zhai, D., Wang, X., Li, Y., Shi, Y., & Li, J. (2017). Intelligent energy and traffic coordination for green cellular networks with hybrid energy supply. IEEE Transactions on Vehicular Technology, 66, 1631–1646.CrossRef Sheng, M., Zhai, D., Wang, X., Li, Y., Shi, Y., & Li, J. (2017). Intelligent energy and traffic coordination for green cellular networks with hybrid energy supply. IEEE Transactions on Vehicular Technology, 66, 1631–1646.CrossRef
17.
go back to reference Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35, 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35, 1936–1947.CrossRef
18.
go back to reference Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17, 1882–1892.CrossRef Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17, 1882–1892.CrossRef
19.
go back to reference Johansson, K. (2007). Cost effective deployment strategies for heterogenous wireless networks. Ph.D. thesis, KTH. Johansson, K. (2007). Cost effective deployment strategies for heterogenous wireless networks. Ph.D. thesis, KTH.
20.
go back to reference Fan, Q., & Ansari, N. (2016, April). Green energy aware user association in heterogeneous networks. In 2016 IEEE wireless communications and networking conference (pp. 1–6). IEEE. Fan, Q., & Ansari, N. (2016, April). Green energy aware user association in heterogeneous networks. In 2016 IEEE wireless communications and networking conference (pp. 1–6). IEEE.
21.
go back to reference Lee, G., Saad, W., Bennis, M., Mehbodniya, A., & Adachi, F. (2017). Online ski rental for on/off scheduling of energy harvesting base stations. IEEE Transactions on Wireless Communications, 16, 2976–2990.CrossRef Lee, G., Saad, W., Bennis, M., Mehbodniya, A., & Adachi, F. (2017). Online ski rental for on/off scheduling of energy harvesting base stations. IEEE Transactions on Wireless Communications, 16, 2976–2990.CrossRef
22.
go back to reference Han, T., & Ansari, N. (2016). Provisioning green energy for base stations in heterogeneous networks. IEEE Transactions on Vehicular Technology, 65, 5439–5448.CrossRef Han, T., & Ansari, N. (2016). Provisioning green energy for base stations in heterogeneous networks. IEEE Transactions on Vehicular Technology, 65, 5439–5448.CrossRef
23.
go back to reference Han, T., & Ansari, N. (2014, Dec). Provisioning green energy for small cell BSs. In 2014 IEEE global communications conference (Vol. 2, pp. 4935–4940). IEEE Han, T., & Ansari, N. (2014, Dec). Provisioning green energy for small cell BSs. In 2014 IEEE global communications conference (Vol. 2, pp. 4935–4940). IEEE
24.
go back to reference Peng, C., Lee, S.-B., Lu, S., Luo, H., & Li, H. (2011). Traffic-driven power saving in operational 3G cellular networks. In: Proceedings of the 17th annual international conference on mobile computing and networking-MobiCom ’11 (p. 121). New York, NY: ACM Press Peng, C., Lee, S.-B., Lu, S., Luo, H., & Li, H. (2011). Traffic-driven power saving in operational 3G cellular networks. In: Proceedings of the 17th annual international conference on mobile computing and networking-MobiCom ’11 (p. 121). New York, NY: ACM Press
25.
go back to reference Poikselka, M., Holma, H., Hongisto, J., Kallio, J., & Toskala, A. (2012). Voice over LTE (VoLTE). London: Wiley.CrossRef Poikselka, M., Holma, H., Hongisto, J., Kallio, J., & Toskala, A. (2012). Voice over LTE (VoLTE). London: Wiley.CrossRef
26.
go back to reference Marsan, M. A., & Meo, M. (2010). Energy efficient management of two cellular access networks. ACM SIGMETRICS Performance Evaluation Review, 37, 69.CrossRef Marsan, M. A., & Meo, M. (2010). Energy efficient management of two cellular access networks. ACM SIGMETRICS Performance Evaluation Review, 37, 69.CrossRef
27.
go back to reference Hossain, M. F., Munasinghe, K. S., & Jamalipour, A. (2010, Dec). A protocooperation-based sleep-wake architecture for next generation green cellular access networks. In 2010 4th international conference on signal processing communication systems (vol. 1096276, pp. 1–8). IEEE Hossain, M. F., Munasinghe, K. S., & Jamalipour, A. (2010, Dec). A protocooperation-based sleep-wake architecture for next generation green cellular access networks. In 2010 4th international conference on signal processing communication systems (vol. 1096276, pp. 1–8). IEEE
28.
go back to reference Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12, 2126–2136.CrossRef Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12, 2126–2136.CrossRef
29.
go back to reference Report ITU-R M.2135-1. (2009). Guidelines for evaluation of radio interface technologies for IMT advanced. Evaluation, 93(3), 101. Report ITU-R M.2135-1. (2009). Guidelines for evaluation of radio interface technologies for IMT advanced. Evaluation, 93(3), 101.
30.
go back to reference Shannon, C. (1956). The zero error capacity of a noisy channel. IEEE Transactions on Information Theory, 2, 8–19.MathSciNetCrossRef Shannon, C. (1956). The zero error capacity of a noisy channel. IEEE Transactions on Information Theory, 2, 8–19.MathSciNetCrossRef
31.
go back to reference Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18, 40–49.CrossRef Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18, 40–49.CrossRef
32.
go back to reference Yang, J., Zhang, X., & Wang, W. (2016). Two-stage base station sleeping scheme for green cellular networks. Journal of Communications and Networks, 18, 600–609.CrossRef Yang, J., Zhang, X., & Wang, W. (2016). Two-stage base station sleeping scheme for green cellular networks. Journal of Communications and Networks, 18, 600–609.CrossRef
33.
go back to reference Hassan, H. A. H., Nuaymi, L., & Pelov, A. (2013, Oct). Renewable energy in cellular networks: A survey. In 2013 IEEE Online Conference on Green Communications (pp. 1–7). IEEE. Hassan, H. A. H., Nuaymi, L., & Pelov, A. (2013, Oct). Renewable energy in cellular networks: A survey. In 2013 IEEE Online Conference on Green Communications (pp. 1–7). IEEE.
34.
go back to reference Valerdi, D., Zhu, Q., Exadaktylos, K., Xia, S., Arranz, M., Liu, R., & Xu, D. (2010, Dec) Intelligent energy managed service for green base stations. In 2010 IEEE GLOBECOM workshops (pp. 1453–1457). IEEE. Valerdi, D., Zhu, Q., Exadaktylos, K., Xia, S., Arranz, M., Liu, R., & Xu, D. (2010, Dec) Intelligent energy managed service for green base stations. In 2010 IEEE GLOBECOM workshops (pp. 1453–1457). IEEE.
36.
go back to reference Wirth, H. (2013). Recent facts about photovoltaics in Germany. Freiburg: Fraunhofer Institute for Solar Energy Systems. Wirth, H. (2013). Recent facts about photovoltaics in Germany. Freiburg: Fraunhofer Institute for Solar Energy Systems.
38.
go back to reference Piro, G., Miozzo, M., Forte, G., Baldo, N., Grieco, L. A., Boggia, G., et al. (2013). HetNets powered by renewable energy sources: Sustainable next-generation cellular networks. IEEE Internet Computing, 17, 32–39.CrossRef Piro, G., Miozzo, M., Forte, G., Baldo, N., Grieco, L. A., Boggia, G., et al. (2013). HetNets powered by renewable energy sources: Sustainable next-generation cellular networks. IEEE Internet Computing, 17, 32–39.CrossRef
39.
go back to reference IRENA. (2015). Battery storage for renewables: Market status and technology outlook. Irena, January, 60. IRENA. (2015). Battery storage for renewables: Market status and technology outlook. Irena, January, 60.
40.
go back to reference Eller, A., & Dehamna, A. (2016). Energy storage tracker 1Q16. Technical report, Navigant research. Eller, A., & Dehamna, A. (2016). Energy storage tracker 1Q16. Technical report, Navigant research.
41.
go back to reference Badawy, G. H., Sayegh, A. A., & Todd, T. D. (2010). Energy provisioning in solar-powered wireless mesh networks. IEEE Transactions on Vehicular Technology, 59, 3859–3871.CrossRef Badawy, G. H., Sayegh, A. A., & Todd, T. D. (2010). Energy provisioning in solar-powered wireless mesh networks. IEEE Transactions on Vehicular Technology, 59, 3859–3871.CrossRef
43.
go back to reference Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., et al. (2011). Coordinated multipoint: Concepts, performance, and field trial results. IEEE Communications Magazine, 49, 102–111.CrossRef Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., et al. (2011). Coordinated multipoint: Concepts, performance, and field trial results. IEEE Communications Magazine, 49, 102–111.CrossRef
44.
go back to reference Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). Berlin: Springer.CrossRef Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). Berlin: Springer.CrossRef
46.
go back to reference Peng, C., Lee, S.-B., Lu, S., & Luo, H. (2014). GreenBSN: Enabling energy-proportional cellular base station networks. IEEE Transactions on Mobile Computing, 13, 2537–2551.CrossRef Peng, C., Lee, S.-B., Lu, S., & Luo, H. (2014). GreenBSN: Enabling energy-proportional cellular base station networks. IEEE Transactions on Mobile Computing, 13, 2537–2551.CrossRef
48.
go back to reference Energysage. (2015). Is residential electricity price going up or down? Energysage. (2015). Is residential electricity price going up or down?
49.
go back to reference Niu, Z., Wu, Y., Gong, J., & Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48, 74–79.CrossRef Niu, Z., Wu, Y., Gong, J., & Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48, 74–79.CrossRef
50.
go back to reference Nvidia. (2018). DGX-1 deep learning system datasheet. Nvidia. (2018). DGX-1 deep learning system datasheet.
Metadata
Title
Reducing the total cost of ownership in radio access networks by using renewable energy resources
Authors
Turgay Pamuklu
Cem Ersoy
Publication date
26-10-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1862-5

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue