Skip to main content
Top
Published in: Rare Metals 3/2015

01-03-2015

Regenerative engineering and bionic limbs

Authors: Roshan James, Cato T. Laurencin

Published in: Rare Metals | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counseling. There is no prosthesis that allows the amputees near normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities, and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material, and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feedback to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits, and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past 30 years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feedback will be the important goals in regenerative engineering over the next two decades.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Pidcoke HF, Aden JK, Mora AG, Borgman MA, Spinella PC, Dubick MA, Blackbourne LH, Cap AP. Ten-year analysis of transfusion in operation iraqi freedom and operation enduring freedom: increased plasma and platelet use correlates with improved survival. J Trauma Acute Care Surg. 2012;73(S5):S445.CrossRef Pidcoke HF, Aden JK, Mora AG, Borgman MA, Spinella PC, Dubick MA, Blackbourne LH, Cap AP. Ten-year analysis of transfusion in operation iraqi freedom and operation enduring freedom: increased plasma and platelet use correlates with improved survival. J Trauma Acute Care Surg. 2012;73(S5):S445.CrossRef
[2]
go back to reference Paulus N, Jacobs M, Greiner A. Primary and secondary amputation in critical limb ischemia patients: different aspects. Acta Chir Belg. 2012;112(4):251. Paulus N, Jacobs M, Greiner A. Primary and secondary amputation in critical limb ischemia patients: different aspects. Acta Chir Belg. 2012;112(4):251.
[3]
go back to reference Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9.
[4]
go back to reference Krueger CA, Wenke JC, Ficke JR. Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S438.CrossRef Krueger CA, Wenke JC, Ficke JR. Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S438.CrossRef
[5]
go back to reference Jones WS, Patel MR, Dai D, Subherwal S, Stafford J, Calhoun S, Peterson ED. Temporal trends and geographic variation of lower-extremity amputation in patients with peripheral artery disease: results from U.S. Medicare 2000–2008. J Am Coll Cardiol. 2012;60(21):2230.CrossRef Jones WS, Patel MR, Dai D, Subherwal S, Stafford J, Calhoun S, Peterson ED. Temporal trends and geographic variation of lower-extremity amputation in patients with peripheral artery disease: results from U.S. Medicare 2000–2008. J Am Coll Cardiol. 2012;60(21):2230.CrossRef
[6]
go back to reference Hammarlund CS, Carlstrom M, Melchior R, Persson BM. Prevalence of back pain, its effect on functional ability and health-related quality of life in lower limb amputees secondary to trauma or tumour: a comparison across three levels of amputation. Prosthet Orthot Int. 2011;35(1):97.CrossRef Hammarlund CS, Carlstrom M, Melchior R, Persson BM. Prevalence of back pain, its effect on functional ability and health-related quality of life in lower limb amputees secondary to trauma or tumour: a comparison across three levels of amputation. Prosthet Orthot Int. 2011;35(1):97.CrossRef
[7]
go back to reference Miyajima S, Shirai A, Yamamoto S, Okada N, Matsushita T. Risk factors for major limb amputations in diabetic foot gangrene patients. Diabetes Res Clin Pract. 2006;71(3):272.CrossRef Miyajima S, Shirai A, Yamamoto S, Okada N, Matsushita T. Risk factors for major limb amputations in diabetic foot gangrene patients. Diabetes Res Clin Pract. 2006;71(3):272.CrossRef
[8]
go back to reference Zlotolow DA, Kozin SH. Advances in upper extremity prosthetics. Hand Clin. 2012;28(4):587.CrossRef Zlotolow DA, Kozin SH. Advances in upper extremity prosthetics. Hand Clin. 2012;28(4):587.CrossRef
[9]
go back to reference Yang WM, Shalumon KT, Tang X, Ramos DM, Laurencin CT, Kumbar SG. Optimization of Bioactive Polymer–Ceramic Nanocomposite Scaffolds for Bone Regenerative Engineering, in American Association for Dental Research/International Association for Dental Research. Charlotte, NC: International Association for Dental Research; 2014. 593. Yang WM, Shalumon KT, Tang X, Ramos DM, Laurencin CT, Kumbar SG. Optimization of Bioactive Polymer–Ceramic Nanocomposite Scaffolds for Bone Regenerative Engineering, in American Association for Dental Research/International Association for Dental Research. Charlotte, NC: International Association for Dental Research; 2014. 593.
[10]
go back to reference James R, Daley GQ, Laurencin CT. Regenerative engineering: materials, mimicry, and manipulations to promote cell and tissue growth. Sharp PA, Langer R editors. National Academy of Engineering - The Bridge: The Convergence of Engineering and the Life Sciences. 2013; 43(3):8. James R, Daley GQ, Laurencin CT. Regenerative engineering: materials, mimicry, and manipulations to promote cell and tissue growth. Sharp PA, Langer R editors. National Academy of Engineering - The Bridge: The Convergence of Engineering and the Life Sciences. 2013; 43(3):8.
[11]
go back to reference Peach MS, Roshan J, Udaya ST, Meng D, Nicole LM, Harry RA, Cato TL, Sangamesh GK. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells. Biomed Mater. 2012;7(4):045016.CrossRef Peach MS, Roshan J, Udaya ST, Meng D, Nicole LM, Harry RA, Cato TL, Sangamesh GK. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells. Biomed Mater. 2012;7(4):045016.CrossRef
[12]
go back to reference Kumbar SG, Toti US, Deng M, James R, Laurencin CT, Aravamudhan A, Harmon M, Ramos DM. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomed Mater. 2011;6(6):065005.CrossRef Kumbar SG, Toti US, Deng M, James R, Laurencin CT, Aravamudhan A, Harmon M, Ramos DM. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomed Mater. 2011;6(6):065005.CrossRef
[13]
go back to reference James R, Toti US, Laurencin CT, Kumbar SG. Electrospun nanofibrous scaffolds for engineering soft connective tissues. Methods Mol Biol (Clifton, N.J.). 2011;726:243.CrossRef James R, Toti US, Laurencin CT, Kumbar SG. Electrospun nanofibrous scaffolds for engineering soft connective tissues. Methods Mol Biol (Clifton, N.J.). 2011;726:243.CrossRef
[14]
go back to reference James R, Kumbar SG, Laurencin CT, Balian G, Chhabra AB. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed Mater. 2011;6(2):025011.CrossRef James R, Kumbar SG, Laurencin CT, Balian G, Chhabra AB. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed Mater. 2011;6(2):025011.CrossRef
[15]
go back to reference Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT. Functionalization of chitosan/poly(lactic acid–glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A. 2010;93(3):1193. Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT. Functionalization of chitosan/poly(lactic acid–glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A. 2010;93(3):1193.
[16]
go back to reference Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, Krogman NR, Allcock HR, Laurencin CT. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20(17):2794.CrossRef Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, Krogman NR, Allcock HR, Laurencin CT. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20(17):2794.CrossRef
[17]
go back to reference Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater (Bristol, England). 2008;3(3):034002.CrossRef Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater (Bristol, England). 2008;3(3):034002.CrossRef
[18]
go back to reference Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9.
[19]
go back to reference Lake C, Dodson R. Progressive upper limb prosthetics. Phys Med Rehabil Clin N Am. 2006;17(1):49.CrossRef Lake C, Dodson R. Progressive upper limb prosthetics. Phys Med Rehabil Clin N Am. 2006;17(1):49.CrossRef
[20]
go back to reference González-Fernández M. Development of upper limb prostheses: current progress and areas for growth. Arch Phys Med Rehabil. 2014;95(6):1013.CrossRef González-Fernández M. Development of upper limb prostheses: current progress and areas for growth. Arch Phys Med Rehabil. 2014;95(6):1013.CrossRef
[21]
go back to reference Mourino V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9(68):401.CrossRef Mourino V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9(68):401.CrossRef
[22]
go back to reference Gerard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.CrossRef Gerard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.CrossRef
[23]
go back to reference Taylor A. Therapeutic uses of trace elements. Clin Endocrinol Metab. 1985;14(3):703.CrossRef Taylor A. Therapeutic uses of trace elements. Clin Endocrinol Metab. 1985;14(3):703.CrossRef
[24]
go back to reference Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM&R. 2011;3(1):55.CrossRef Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM&R. 2011;3(1):55.CrossRef
[25]
go back to reference Alley R, Sears H. Powered Upper Limb Prosthetics in Adults, in Powered Upper Limb Prostheses. New York: Springer; 2004. 117. Alley R, Sears H. Powered Upper Limb Prosthetics in Adults, in Powered Upper Limb Prostheses. New York: Springer; 2004. 117.
[26]
go back to reference Jones L, Davidson J. Save that arm: a study of problems in the remaining arm of unilateral upper limb amputees. Prosthet Orthot Int. 1999;23(1):55. Jones L, Davidson J. Save that arm: a study of problems in the remaining arm of unilateral upper limb amputees. Prosthet Orthot Int. 1999;23(1):55.
[27]
go back to reference Spiegel SR. Adult Myoelectric Upper-Limb Prosthetic Training, in Comprehensive Management of the Upper-Limb Amputee. New York: Springer; 1989. 60. Spiegel SR. Adult Myoelectric Upper-Limb Prosthetic Training, in Comprehensive Management of the Upper-Limb Amputee. New York: Springer; 1989. 60.
[28]
go back to reference Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31(3):236.CrossRef Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31(3):236.CrossRef
[29]
go back to reference Biddiss E, Chau T. Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil. 2007;86(12):977.CrossRef Biddiss E, Chau T. Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil. 2007;86(12):977.CrossRef
[30]
go back to reference Agnew SP, Ko J, De La Garza M, Kuiken T, Dumanian G. Limb transplantation and targeted reinnervation: a practical comparison. J Reconstr Microsurg. 2012;28(1):63.CrossRef Agnew SP, Ko J, De La Garza M, Kuiken T, Dumanian G. Limb transplantation and targeted reinnervation: a practical comparison. J Reconstr Microsurg. 2012;28(1):63.CrossRef
[31]
go back to reference Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009;301(6):619.CrossRef Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009;301(6):619.CrossRef
[32]
go back to reference Kuiken T. Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am. 2006;17(1):1.CrossRef Kuiken T. Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am. 2006;17(1):1.CrossRef
[33]
go back to reference Kaufman CL, Breidenbach W. World experience after more than a decade of clinical hand transplantation: update from the Louisville hand transplant program. Hand Clin. 2011;27(4):417.CrossRef Kaufman CL, Breidenbach W. World experience after more than a decade of clinical hand transplantation: update from the Louisville hand transplant program. Hand Clin. 2011;27(4):417.CrossRef
[34]
go back to reference Petruzzo P, Lanzetta M, Dubernard JM, Landin L, Cavadas P, Margreiter R, Schneeberger S, Breidenbach W, Kaufman C, Jablecki J, Schuind F, Dumontier C. The international registry on hand and composite tissue transplantation. Transplantation. 2010;90(12):1590.CrossRef Petruzzo P, Lanzetta M, Dubernard JM, Landin L, Cavadas P, Margreiter R, Schneeberger S, Breidenbach W, Kaufman C, Jablecki J, Schuind F, Dumontier C. The international registry on hand and composite tissue transplantation. Transplantation. 2010;90(12):1590.CrossRef
[35]
go back to reference Chung KC, Oda T, Saddawi-Konefka D, Shauver MJ. An economic analysis of hand transplantation in the United States. Plast Reconstr Surg. 2010;125(2):589.CrossRef Chung KC, Oda T, Saddawi-Konefka D, Shauver MJ. An economic analysis of hand transplantation in the United States. Plast Reconstr Surg. 2010;125(2):589.CrossRef
[36]
go back to reference Jones NF, Schneeberger S. Arm transplantation: prospects and visions. Transplant Proc. 2009;41(2):476.CrossRef Jones NF, Schneeberger S. Arm transplantation: prospects and visions. Transplant Proc. 2009;41(2):476.CrossRef
[37]
go back to reference Petruzzo P, Lanzetta M, Dubernard JM, Margreiter R, Schuind F, Breidenbach W, Nolli R, Schneeberger S, van Holder C, Kaufman C, Jablecki J, Landin L, Cavadas P. The international registry on hand and composite tissue transplantation. Transplantation. 2008;86(4):487.CrossRef Petruzzo P, Lanzetta M, Dubernard JM, Margreiter R, Schuind F, Breidenbach W, Nolli R, Schneeberger S, van Holder C, Kaufman C, Jablecki J, Landin L, Cavadas P. The international registry on hand and composite tissue transplantation. Transplantation. 2008;86(4):487.CrossRef
[38]
go back to reference Agnew SP, Ko J, De La Garza M, Kuiken T, Dumanian G. Limb transplantation and targeted reinnervation: a practical comparison. J Reconstr Microsurg. 2012;28(01):63.CrossRef Agnew SP, Ko J, De La Garza M, Kuiken T, Dumanian G. Limb transplantation and targeted reinnervation: a practical comparison. J Reconstr Microsurg. 2012;28(01):63.CrossRef
[39]
go back to reference Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int. 2004;28(3):245. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int. 2004;28(3):245.
[40]
go back to reference Kuiken T. Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am. 2006;17(1):1.CrossRef Kuiken T. Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am. 2006;17(1):1.CrossRef
[41]
go back to reference Gutmann E. The reinnervation of muscle by sensory nerve fibres. J Anat. 1945;79:1. Gutmann E. The reinnervation of muscle by sensory nerve fibres. J Anat. 1945;79:1.
[42]
go back to reference Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JP. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc Natl Acad Sci USA. 2007;104(50):20061.CrossRef Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JP. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc Natl Acad Sci USA. 2007;104(50):20061.CrossRef
[43]
go back to reference Sensinger JW, Schultz AE, Kuiken TA. Examination of force discrimination in human upper limb amputees with reinnervated limb sensation following peripheral nerve transfer. IEEE Trans Neural Syst Rehabil Eng. 2009;17(5):438.CrossRef Sensinger JW, Schultz AE, Kuiken TA. Examination of force discrimination in human upper limb amputees with reinnervated limb sensation following peripheral nerve transfer. IEEE Trans Neural Syst Rehabil Eng. 2009;17(5):438.CrossRef
[44]
go back to reference Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004;29(4):605.CrossRef Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004;29(4):605.CrossRef
[45]
go back to reference Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Orthop Clin N Am. 2000;31(3):485.CrossRef Hudson TW, Evans GR, Schmidt CE. Engineering strategies for peripheral nerve repair. Orthop Clin N Am. 2000;31(3):485.CrossRef
[46]
go back to reference Edell DJ. A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng. 1986;33(2):203.CrossRef Edell DJ. A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng. 1986;33(2):203.CrossRef
[47]
go back to reference Hoffer JA, Loeb GE. Implantable electrical and mechanical interfaces with nerve and muscle. Ann Biomed Eng. 1980;8(4–6):351.CrossRef Hoffer JA, Loeb GE. Implantable electrical and mechanical interfaces with nerve and muscle. Ann Biomed Eng. 1980;8(4–6):351.CrossRef
[48]
go back to reference De Luca CJ. Control of upper-limb prostheses: a case for neuroelectric control. J Med Eng Technol. 1978;2(2):57.CrossRef De Luca CJ. Control of upper-limb prostheses: a case for neuroelectric control. J Med Eng Technol. 1978;2(2):57.CrossRef
[49]
go back to reference Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am. 2007;32(5):657.CrossRef Jia X, Koenig MA, Zhang X, Zhang J, Chen T, Chen Z. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am. 2007;32(5):657.CrossRef
[50]
go back to reference Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468.CrossRef Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468.CrossRef
[51]
go back to reference Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G. Retinal prosthesis for the blind. Surv Ophthalmol. 2002;47(4):335.CrossRef Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G. Retinal prosthesis for the blind. Surv Ophthalmol. 2002;47(4):335.CrossRef
[52]
go back to reference Miranda PC, Sampaio AL, Lopes RA, Ramos Venosa A, de Oliveira CA. Hearing preservation in cochlear implant surgery. Int. J Otolaryngol. 2014;2014:468515. Miranda PC, Sampaio AL, Lopes RA, Ramos Venosa A, de Oliveira CA. Hearing preservation in cochlear implant surgery. Int. J Otolaryngol. 2014;2014:468515.
[53]
go back to reference Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10(3):229.CrossRef Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10(3):229.CrossRef
[54]
go back to reference Leventhal DK, Durand DM. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode. IEEE Trans Biomed Eng. 2004;51(9):1649.CrossRef Leventhal DK, Durand DM. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode. IEEE Trans Biomed Eng. 2004;51(9):1649.CrossRef
[55]
go back to reference Foldes EL, Ackermann DM, Bhadra N, Kilgore KL, Bhadra N. Design, fabrication and evaluation of a conforming circumpolar peripheral nerve cuff electrode for acute experimental use. J Neurosci Methods. 2011;196(1):31.CrossRef Foldes EL, Ackermann DM, Bhadra N, Kilgore KL, Bhadra N. Design, fabrication and evaluation of a conforming circumpolar peripheral nerve cuff electrode for acute experimental use. J Neurosci Methods. 2011;196(1):31.CrossRef
[56]
go back to reference Burridge J, Haugland M, Larsen B, Pickering RM, Svaneborg N, Iversen HK, Christensen PB, Haase J, Brennum J, Sinkjaer T. Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia. J Rehabil Med. 2007;39(3):212.CrossRef Burridge J, Haugland M, Larsen B, Pickering RM, Svaneborg N, Iversen HK, Christensen PB, Haase J, Brennum J, Sinkjaer T. Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia. J Rehabil Med. 2007;39(3):212.CrossRef
[57]
go back to reference Ward MP, Rajdev P, Ellison C, Irazoqui PP. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 2009;1282:183.CrossRef Ward MP, Rajdev P, Ellison C, Irazoqui PP. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 2009;1282:183.CrossRef
[58]
go back to reference Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans Biomed Eng. 2004;51(1):146.CrossRef Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans Biomed Eng. 2004;51(1):146.CrossRef
[59]
go back to reference Lago N, Ceballos D, Rodríguez FJ, Stieglitz T, Navarro X. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials. 2005;26(14):2021.CrossRef Lago N, Ceballos D, Rodríguez FJ, Stieglitz T, Navarro X. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials. 2005;26(14):2021.CrossRef
[60]
go back to reference Badia J, Boretius T, Andreu D, Azevedo-Coste C, Stieglitz T, Navarro X. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J Neural Eng. 2011;8(3):036023.CrossRef Badia J, Boretius T, Andreu D, Azevedo-Coste C, Stieglitz T, Navarro X. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J Neural Eng. 2011;8(3):036023.CrossRef
[61]
go back to reference Mathews KS, Wark HA, Normann RA. Assessment of rat sciatic nerve function following acute implantation of high density Utah slanted electrode array (25 electrodes/mm(2)) based on neural recordings and evoked muscle activity. Muscle Nerve. 2014;50(3):417.CrossRef Mathews KS, Wark HA, Normann RA. Assessment of rat sciatic nerve function following acute implantation of high density Utah slanted electrode array (25 electrodes/mm(2)) based on neural recordings and evoked muscle activity. Muscle Nerve. 2014;50(3):417.CrossRef
[62]
go back to reference Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10(11):4650.CrossRef Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10(11):4650.CrossRef
[63]
go back to reference Egan J, Baker J, House P, Greger B. Detection and classification of multiple finger movements using a chronically implanted Utah Electrode Array. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7320. Egan J, Baker J, House P, Greger B. Detection and classification of multiple finger movements using a chronically implanted Utah Electrode Array. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7320.
[64]
go back to reference Smith SL, Judy JW, Otis TS. An ultra small array of electrodes for stimulating multiple inputs into a single neuron. J Neurosci Methods. 2004;133(1–2):109. Smith SL, Judy JW, Otis TS. An ultra small array of electrodes for stimulating multiple inputs into a single neuron. J Neurosci Methods. 2004;133(1–2):109.
[65]
go back to reference Cottman E. Nanotextured Surfaces: New Generation Bioelectronic Interfaces for Nanomedicine (NNIN REU). Richmond, VA: Virginia Commonwealth University-Electrical Engineering Research Accomplishments; 2009. 6. Cottman E. Nanotextured Surfaces: New Generation Bioelectronic Interfaces for Nanomedicine (NNIN REU). Richmond, VA: Virginia Commonwealth University-Electrical Engineering Research Accomplishments; 2009. 6.
[66]
go back to reference Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain–machine interface. IEEE Trans Biomed Eng. 2004;51(6):881.CrossRef Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain–machine interface. IEEE Trans Biomed Eng. 2004;51(6):881.CrossRef
[67]
go back to reference Sharp PA, Langer R. Promoting convergence in biomedical science. Science. 2011;333(6042):527.CrossRef Sharp PA, Langer R. Promoting convergence in biomedical science. Science. 2011;333(6042):527.CrossRef
[68]
go back to reference Kim YH, Lee C, Ahn KM, Lee M, Kim YJ. Robust and real-time monitoring of nerve regeneration using implantable flexible microelectrode array. Biosens Bioelectron. 2009;24(7):1883.CrossRef Kim YH, Lee C, Ahn KM, Lee M, Kim YJ. Robust and real-time monitoring of nerve regeneration using implantable flexible microelectrode array. Biosens Bioelectron. 2009;24(7):1883.CrossRef
[69]
go back to reference Garde K, Keefer E, Botterman B, Galvan P, Romero MI. Early interfaced neural activity from chronic amputated nerves. Front Neuroeng. 2009;2:5.CrossRef Garde K, Keefer E, Botterman B, Galvan P, Romero MI. Early interfaced neural activity from chronic amputated nerves. Front Neuroeng. 2009;2:5.CrossRef
[70]
go back to reference Cipriani C, Antfolk C, Balkenius C, Rosen B, Lundborg G, Carrozza MC, Sebelius F. A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study. IEEE Trans Biomed Eng. 2009;56(11):2739.CrossRef Cipriani C, Antfolk C, Balkenius C, Rosen B, Lundborg G, Carrozza MC, Sebelius F. A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study. IEEE Trans Biomed Eng. 2009;56(11):2739.CrossRef
[71]
go back to reference Lebedev MA, Nicolelis MA. Brain–machine interfaces: past, present and future. Trends Neurosci. 2006;29(9):536.CrossRef Lebedev MA, Nicolelis MA. Brain–machine interfaces: past, present and future. Trends Neurosci. 2006;29(9):536.CrossRef
[72]
go back to reference Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain–computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabil. 2007;4:40.CrossRef Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain–computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabil. 2007;4:40.CrossRef
[73]
go back to reference Peach MS, Kumbar SG, James R, Toti US, Balasubramaniam D, Deng M, Ulery B, Mazzocca AD, McCarthy MB, Morozowich NL, Allcock HR, Laurencin CT. Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration. J Biomed Nanotechnol. 2012;8(1):107.CrossRef Peach MS, Kumbar SG, James R, Toti US, Balasubramaniam D, Deng M, Ulery B, Mazzocca AD, McCarthy MB, Morozowich NL, Allcock HR, Laurencin CT. Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration. J Biomed Nanotechnol. 2012;8(1):107.CrossRef
[74]
go back to reference James R. Novel tissue engineering strategies for tendon repair and regeneration, in biomedical engineering. Charlottesville: University of Virginia; 2012. 1. James R. Novel tissue engineering strategies for tendon repair and regeneration, in biomedical engineering. Charlottesville: University of Virginia; 2012. 1.
[75]
go back to reference James R, Deng M, Laurencin C, Kumbar S. Nanocomposites and bone regeneration. Front Mater Sci. 2011;5(4):342.CrossRef James R, Deng M, Laurencin C, Kumbar S. Nanocomposites and bone regeneration. Front Mater Sci. 2011;5(4):342.CrossRef
[76]
go back to reference Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100.
[77]
go back to reference James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33A(1):102.CrossRef James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33A(1):102.CrossRef
[78]
go back to reference Ferrandez JM, Lorente V, de Santos D, Cuadra JM, de la Paz F, Alvarez JR, Fernandez E. Human neuroblastoma cultures for biorobotics. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6672. Ferrandez JM, Lorente V, de Santos D, Cuadra JM, de la Paz F, Alvarez JR, Fernandez E. Human neuroblastoma cultures for biorobotics. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6672.
[79]
go back to reference Hampton S, King L. Healing an intractable wound using bio-electrical stimulation therapy. Br J Nurs. 2005;14(15S):S30.CrossRef Hampton S, King L. Healing an intractable wound using bio-electrical stimulation therapy. Br J Nurs. 2005;14(15S):S30.CrossRef
[80]
go back to reference Williams HB. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study. Microsurgery. 1996;17(11):589.CrossRef Williams HB. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study. Microsurgery. 1996;17(11):589.CrossRef
[81]
go back to reference Mercola JM, Kirsch DL. The basis for microcurrent electrical therapy in conventional medical practice. J Adv Med. 1995;8(2):107. Mercola JM, Kirsch DL. The basis for microcurrent electrical therapy in conventional medical practice. J Adv Med. 1995;8(2):107.
[82]
go back to reference Stanish WD, Rubinovich M, Kozey J, MacGillvary G. The use of electricity in ligament and tendon repair. Physician Sportsmed. 1985;13(8):108. Stanish WD, Rubinovich M, Kozey J, MacGillvary G. The use of electricity in ligament and tendon repair. Physician Sportsmed. 1985;13(8):108.
[83]
go back to reference Stanish WD, Lai A. New concepts of rehabilitation following anterior cruciate reconstruction. Clin Sports Med. 1993;12(1):25. Stanish WD, Lai A. New concepts of rehabilitation following anterior cruciate reconstruction. Clin Sports Med. 1993;12(1):25.
[84]
go back to reference Hudlicka O, Milkiewicz M, Cotter MA, Brown MD. Hypoxia and expression of VEGF-A protein in relation to capillary growth in electrically stimulated rat and rabbit skeletal muscles. Exp Physiol. 2002;87(3):373.CrossRef Hudlicka O, Milkiewicz M, Cotter MA, Brown MD. Hypoxia and expression of VEGF-A protein in relation to capillary growth in electrically stimulated rat and rabbit skeletal muscles. Exp Physiol. 2002;87(3):373.CrossRef
[85]
go back to reference Gavin TP, Spector DA, Wagner H, Breen EC, Wagner PD. Nitric oxide synthase inhibition attenuates the skeletal muscle VEGF mRNA response to exercise. J Appl Physiol. 2000;88(4):1192. Gavin TP, Spector DA, Wagner H, Breen EC, Wagner PD. Nitric oxide synthase inhibition attenuates the skeletal muscle VEGF mRNA response to exercise. J Appl Physiol. 2000;88(4):1192.
[86]
go back to reference Kanno S, Oda N, Abe M, Saito S, Hori K, Handa Y, Tabayashi K, Sato Y. Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. Circulation. 1999;99(20):2682.CrossRef Kanno S, Oda N, Abe M, Saito S, Hori K, Handa Y, Tabayashi K, Sato Y. Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. Circulation. 1999;99(20):2682.CrossRef
[87]
go back to reference Hudlicka O, Brown MD, Egginton S, Dawson JM. Effect of long-term electrical stimulation on vascular supply and fatigue in chronically ischemic muscles. J Appl Physiol. 1994;77(3):1317. Hudlicka O, Brown MD, Egginton S, Dawson JM. Effect of long-term electrical stimulation on vascular supply and fatigue in chronically ischemic muscles. J Appl Physiol. 1994;77(3):1317.
[88]
go back to reference Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim Y-S, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang K-C, Zakin MR, Litt B, Rogers JA. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010;9(6):511.CrossRef Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim Y-S, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang K-C, Zakin MR, Litt B, Rogers JA. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010;9(6):511.CrossRef
[89]
go back to reference Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8):991.CrossRef Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8):991.CrossRef
[90]
go back to reference Tao H, Kaplan DL, Omenetto FG. Silk materials—a road to sustainable high technology. Adv Mater. 2012;24(21):2824.CrossRef Tao H, Kaplan DL, Omenetto FG. Silk materials—a road to sustainable high technology. Adv Mater. 2012;24(21):2824.CrossRef
[91]
go back to reference Kim DH, Kim YS, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett. 2009;95(13):133701.CrossRef Kim DH, Kim YS, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett. 2009;95(13):133701.CrossRef
[92]
go back to reference Tsioris K, Tao H, Liu M, Hopwood JA, Kaplan DL, Averitt RD, Omenetto FG. Rapid transfer-based micropatterning and dry etching of silk microstructures. Adv Mater. 2011;23(17):2015.CrossRef Tsioris K, Tao H, Liu M, Hopwood JA, Kaplan DL, Averitt RD, Omenetto FG. Rapid transfer-based micropatterning and dry etching of silk microstructures. Adv Mater. 2011;23(17):2015.CrossRef
[93]
go back to reference Tao H, Siebert SM, Brenckle MA, Averitt RD, Cronin-Golomb M, Kaplan DL, Omenetto FG. Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Appl Phys Lett. 2010;97(12):123702.CrossRef Tao H, Siebert SM, Brenckle MA, Averitt RD, Cronin-Golomb M, Kaplan DL, Omenetto FG. Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Appl Phys Lett. 2010;97(12):123702.CrossRef
[94]
go back to reference Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S. How animals move: an integrative view. Science. 2000;288(5463):100.CrossRef Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S. How animals move: an integrative view. Science. 2000;288(5463):100.CrossRef
[95]
go back to reference Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK. Muscular thin films for building actuators and powering devices. Science. 2007;317(5843):1366.CrossRef Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK. Muscular thin films for building actuators and powering devices. Science. 2007;317(5843):1366.CrossRef
[96]
go back to reference Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R, Kamm RD, Chen CS, Asada HH. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip. 2012;12(23):4976.CrossRef Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R, Kamm RD, Chen CS, Asada HH. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip. 2012;12(23):4976.CrossRef
[97]
go back to reference Selimovic S, Dokmeci MR, Khademhosseini A. Research highlights. Lab Chip. 2012;12(24):5127.CrossRef Selimovic S, Dokmeci MR, Khademhosseini A. Research highlights. Lab Chip. 2012;12(24):5127.CrossRef
[98]
go back to reference Byl NN, McKenzie A, Wong T, West J, Hunt TK. Incisional wound healing: a controlled study of low and high dose ultrasound. J Orthop Sports Phys Ther. 1993;18(5):619.CrossRef Byl NN, McKenzie A, Wong T, West J, Hunt TK. Incisional wound healing: a controlled study of low and high dose ultrasound. J Orthop Sports Phys Ther. 1993;18(5):619.CrossRef
[99]
go back to reference Byl NN, McKenzie AL, West JM, Whitney J, Hunt T, Scheuenstuhl H. Low-dose ultrasound effects on wound healing: a controlled study with Yucatan pigs. Arch Phys Med Rehabil. 1992;73(7):656. Byl NN, McKenzie AL, West JM, Whitney J, Hunt T, Scheuenstuhl H. Low-dose ultrasound effects on wound healing: a controlled study with Yucatan pigs. Arch Phys Med Rehabil. 1992;73(7):656.
[100]
go back to reference Crisci AR, Ferreira AL. Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats. Ultrasound Med Biol. 2002;28(10):1335.CrossRef Crisci AR, Ferreira AL. Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats. Ultrasound Med Biol. 2002;28(10):1335.CrossRef
[101]
go back to reference Chang CJ. SH Hsu, The effects of low-intensity ultrasound on peripheral nerve regeneration in poly(dl-lactic acid-co-glycolic acid) conduits seeded with Schwann cells. Ultrasound Med Biol. 2004;30(8):1079. Chang CJ. SH Hsu, The effects of low-intensity ultrasound on peripheral nerve regeneration in poly(dl-lactic acid-co-glycolic acid) conduits seeded with Schwann cells. Ultrasound Med Biol. 2004;30(8):1079.
[102]
go back to reference Schofer MD, Block JE, Aigner J, Schmelz A. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. BMC Musculoskelet Disord. 2010;11:229.CrossRef Schofer MD, Block JE, Aigner J, Schmelz A. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. BMC Musculoskelet Disord. 2010;11:229.CrossRef
[103]
go back to reference Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F. Pulsed electromagnetic fields in experimental cutaneous wound healing in rats. J Burn Care Res. 1996;17(6):528.CrossRef Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F. Pulsed electromagnetic fields in experimental cutaneous wound healing in rats. J Burn Care Res. 1996;17(6):528.CrossRef
[104]
go back to reference Shi HF, Xiong J, Chen YX, Wang JF, Qiu XS, Wang YH, Qiu Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet Disord. 2013;14:35.CrossRef Shi HF, Xiong J, Chen YX, Wang JF, Qiu XS, Wang YH, Qiu Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet Disord. 2013;14:35.CrossRef
Metadata
Title
Regenerative engineering and bionic limbs
Authors
Roshan James
Cato T. Laurencin
Publication date
01-03-2015
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2015
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0446-0

Other articles of this Issue 3/2015

Rare Metals 3/2015 Go to the issue

Premium Partners