Skip to main content
Top
Published in: Numerical Algorithms 1/2020

14-06-2019 | Original Paper

Regularized dual gradient distributed method for constrained convex optimization over unbalanced directed graphs

Published in: Numerical Algorithms | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates a distributed optimization problem over a cooperative multi-agent time–varying network, where each agent has its own decision variables that should be set so as to minimize its individual objective subjected to global coupled constraints. Based on push-sum protocol and dual decomposition, we design a regularized dual gradient distributed algorithm to solve this problem, in which the algorithm is implemented in unbalanced time–varying directed graphs only requiring the column stochasticity of communication matrices. By augmenting the corresponding Lagrangian function with a quadratic regularization term, we first obtain the bound of the Lagrangian multipliers which does not require constructing a compact set containing the dual optimal set when compared with most of primal-dual based methods. Then, we obtain that the convergence rate of the proposed method can achieve the order of \(\mathcal {O}(\ln T/T)\) for strongly convex objective functions, where T is the number of iterations. Moreover, the explicit bound of constraint violations is also given. Finally, numerical results on the network utility maximum problem are used to demonstrate the efficiency of the proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nedić, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)MathSciNetCrossRef Nedić, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)MathSciNetCrossRef
2.
go back to reference Nedić, A., Ozdaglar, A., Parrilo, P.: Constrainted consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)CrossRef Nedić, A., Ozdaglar, A., Parrilo, P.: Constrainted consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)CrossRef
3.
go back to reference Jakovetic, D., Xavier, J., Moura, J.M.: Fast distributed gradient methods. IEEE Trans. Autom. Control 59(5), 1131–1146 (2014)MathSciNetCrossRef Jakovetic, D., Xavier, J., Moura, J.M.: Fast distributed gradient methods. IEEE Trans. Autom. Control 59(5), 1131–1146 (2014)MathSciNetCrossRef
4.
go back to reference Nedić, A., Olshevsky, A: Distributed optimization over time-varing directed graphs. IEEE Trans. Autom. Control 3(60), 601–615 (2015)CrossRef Nedić, A., Olshevsky, A: Distributed optimization over time-varing directed graphs. IEEE Trans. Autom. Control 3(60), 601–615 (2015)CrossRef
5.
go back to reference Johansson, B., Keviczky, T., Johansson, M., Johansson, K.H.: Subgradient methods and consensus algorithms for solving convex optimization problems. In Proc. IEEE CDC, pp. 4185–4190. Cancun (2008) Johansson, B., Keviczky, T., Johansson, M., Johansson, K.H.: Subgradient methods and consensus algorithms for solving convex optimization problems. In Proc. IEEE CDC, pp. 4185–4190. Cancun (2008)
6.
go back to reference Baingana, B., Mateos, G., Giannakis, G.: Proximal-gradient algorithms for tracking cascades over social networks. IEEE J. Selected Topics Signal Process. 8(4), 563–575 (2014)CrossRef Baingana, B., Mateos, G., Giannakis, G.: Proximal-gradient algorithms for tracking cascades over social networks. IEEE J. Selected Topics Signal Process. 8(4), 563–575 (2014)CrossRef
7.
go back to reference Mateos, G., Giannakis, G.: Distributed recursiveleast-squares: Stability and performance analysis. IEEE Trans. Signal Process. 60(7), 3740–3754 (2012)MathSciNetCrossRef Mateos, G., Giannakis, G.: Distributed recursiveleast-squares: Stability and performance analysis. IEEE Trans. Signal Process. 60(7), 3740–3754 (2012)MathSciNetCrossRef
8.
go back to reference Bolognani, S., Carli, R., Cavraro, G., Zampieri, S.: Distributed reactive power feedback control for voltage regulation and loss minimization. IEEE Trans. Autom. Control 60(4), 966–981 (2015)MathSciNetCrossRef Bolognani, S., Carli, R., Cavraro, G., Zampieri, S.: Distributed reactive power feedback control for voltage regulation and loss minimization. IEEE Trans. Autom. Control 60(4), 966–981 (2015)MathSciNetCrossRef
9.
go back to reference Zhang, Y., Giannakis, G.: Distributed stochastic market clearing with high-penetration wind power and large-scale demand response. IEEE Trans. Power Syst. 31(2), 895–906 (2016)CrossRef Zhang, Y., Giannakis, G.: Distributed stochastic market clearing with high-penetration wind power and large-scale demand response. IEEE Trans. Power Syst. 31(2), 895–906 (2016)CrossRef
10.
go back to reference Martinez, S., Bullo, F., Cortez, J., Frazzoli, E.: On synchronous robotic networks-Part I: Models, tasks, and complexity. IEEE Trans. Autom. Control 52(12), 2199–2213 (2007)CrossRef Martinez, S., Bullo, F., Cortez, J., Frazzoli, E.: On synchronous robotic networks-Part I: Models, tasks, and complexity. IEEE Trans. Autom. Control 52(12), 2199–2213 (2007)CrossRef
11.
go back to reference Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)MathSciNetCrossRef Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)MathSciNetCrossRef
12.
go back to reference Ram, S.S., Nedić, A., Veeravalli, V.V.: Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147(3), 516–545 (2010)MathSciNetCrossRef Ram, S.S., Nedić, A., Veeravalli, V.V.: Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147(3), 516–545 (2010)MathSciNetCrossRef
13.
go back to reference Duchi, J.C., Agarwal, A., Wainwright, M.J.: Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Autom. Control 57(3), 592–606 (2012)MathSciNetCrossRef Duchi, J.C., Agarwal, A., Wainwright, M.J.: Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Autom. Control 57(3), 592–606 (2012)MathSciNetCrossRef
14.
go back to reference Zhu, M., Martinez, S.: On distributed convex optimization under inequality and equality constraints. IEEE Trans. Autom. Control 57(1), 151–163 (2012)MathSciNetCrossRef Zhu, M., Martinez, S.: On distributed convex optimization under inequality and equality constraints. IEEE Trans. Autom. Control 57(1), 151–163 (2012)MathSciNetCrossRef
15.
go back to reference Li, J., Wu, C., Wu, Z., Long, Q.: Gradient-free method for nonsmooth distributed optimization. J. Glob. Optim. 61(2), 325–340 (2015)MathSciNetCrossRef Li, J., Wu, C., Wu, Z., Long, Q.: Gradient-free method for nonsmooth distributed optimization. J. Glob. Optim. 61(2), 325–340 (2015)MathSciNetCrossRef
16.
go back to reference Lorenzo, P., Scutari, G.: Netx: In-network nonconvex optimization. IEEE Trans. Signal Inf. Process. Netw. 2(2), 120–136 (2016)CrossRef Lorenzo, P., Scutari, G.: Netx: In-network nonconvex optimization. IEEE Trans. Signal Inf. Process. Netw. 2(2), 120–136 (2016)CrossRef
17.
go back to reference Li, J., Chen, G., Dong, Z., Wu, Z.: Distributed mirror descent method for multi-agent optimization with delay. Neurocomputing 177, 643–650 (2016)CrossRef Li, J., Chen, G., Dong, Z., Wu, Z.: Distributed mirror descent method for multi-agent optimization with delay. Neurocomputing 177, 643–650 (2016)CrossRef
18.
go back to reference Gharesifard, B., Cortes, J.: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Autom. Control 59(3), 781–786 (2012)MathSciNetCrossRef Gharesifard, B., Cortes, J.: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Autom. Control 59(3), 781–786 (2012)MathSciNetCrossRef
19.
go back to reference Tsianos, K.I., Lawlor, S., Rabbat, M.G.: Consensus-based distributed optimization: Practical issues and applications in large-scale machine learning. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1543–1550. IEEE (2012) Tsianos, K.I., Lawlor, S., Rabbat, M.G.: Consensus-based distributed optimization: Practical issues and applications in large-scale machine learning. In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1543–1550. IEEE (2012)
20.
go back to reference Nedić, A., Olshevsky, A: Stochastic gradient-push for strongly convex functions on time-varying directed graphs. IEEE Trans. Autom. Control 12(61), 3936–3947 (2016)MathSciNetCrossRef Nedić, A., Olshevsky, A: Stochastic gradient-push for strongly convex functions on time-varying directed graphs. IEEE Trans. Autom. Control 12(61), 3936–3947 (2016)MathSciNetCrossRef
21.
go back to reference Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)MATH Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)MATH
22.
go back to reference Necoara, I., Suykens, J.A.: Application of smoothing technique to decomposition in convex optimization. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)MathSciNetCrossRef Necoara, I., Suykens, J.A.: Application of smoothing technique to decomposition in convex optimization. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)MathSciNetCrossRef
23.
go back to reference Li, J., Chen, G., Dong, Z., Wu, Z.: A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints. Comput. Optim. Appl. 64(3), 671–697 (2016)MathSciNetCrossRef Li, J., Chen, G., Dong, Z., Wu, Z.: A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints. Comput. Optim. Appl. 64(3), 671–697 (2016)MathSciNetCrossRef
24.
go back to reference Yuan, D., Xu, S., Zhao, H.: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 41(6), 1715–1724 (2011)CrossRef Yuan, D., Xu, S., Zhao, H.: Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 41(6), 1715–1724 (2011)CrossRef
25.
go back to reference Aybat, N.S., Hamedani, E.Y.: Distributed primal-dual method for multi-agent sharing problem with conic constraints. In: 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 777–782. IEEE (2016) Aybat, N.S., Hamedani, E.Y.: Distributed primal-dual method for multi-agent sharing problem with conic constraints. In: 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 777–782. IEEE (2016)
26.
go back to reference Aybat, N.S., Hamedani, E.Y.: A distributed ADMM-like method for resource sharing under conic constraints over time-varying networks. arXiv:1611.07393 (2016) Aybat, N.S., Hamedani, E.Y.: A distributed ADMM-like method for resource sharing under conic constraints over time-varying networks. arXiv:1611.​07393 (2016)
27.
go back to reference Chang, T.H., Nedić, A., Scaglione, A.: Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans. Autom. Control 59(6), 1524–1538 (2014)MathSciNetCrossRef Chang, T.H., Nedić, A., Scaglione, A.: Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans. Autom. Control 59(6), 1524–1538 (2014)MathSciNetCrossRef
28.
go back to reference Yuan, D., Ho, D.W.C., Xu, S.: Regularized primal-dual subgradient method for distributed constrained optimization. IEEE Trans. Cybern. 46(9), 2109–2118 (2016)CrossRef Yuan, D., Ho, D.W.C., Xu, S.: Regularized primal-dual subgradient method for distributed constrained optimization. IEEE Trans. Cybern. 46(9), 2109–2118 (2016)CrossRef
29.
go back to reference Khuzani, M.B., Li, N.: Distributed regularized primal-dual method: Convergence analysis and trade-offs. arXiv:1609.08262v3 (2017) Khuzani, M.B., Li, N.: Distributed regularized primal-dual method: Convergence analysis and trade-offs. arXiv:1609.​08262v3 (2017)
30.
go back to reference Falsone, A., Margellos, K., Garetti, S., Prandini, M.: Dual decomposition and proximal minimization for multi-agent distributed optimization with coupling constraints. Automatica 84, 149–158 (2017)MathSciNetCrossRef Falsone, A., Margellos, K., Garetti, S., Prandini, M.: Dual decomposition and proximal minimization for multi-agent distributed optimization with coupling constraints. Automatica 84, 149–158 (2017)MathSciNetCrossRef
31.
go back to reference Low, S.H., Lapsley, D.E.: Optimization flow control. I. Basic algorithm and convergence. IEEE/ACM Trans. Network. 7, 861–874 (1999)CrossRef Low, S.H., Lapsley, D.E.: Optimization flow control. I. Basic algorithm and convergence. IEEE/ACM Trans. Network. 7, 861–874 (1999)CrossRef
32.
go back to reference Beck, A., Nedić, A., Ozdaglar, A., Teboulle, M.: An O(1/k) Gradient method for network resource Aalocation problems. IEEE Trans. Cont. Net. Sys 1(1), 64–73 (2014)CrossRef Beck, A., Nedić, A., Ozdaglar, A., Teboulle, M.: An O(1/k) Gradient method for network resource Aalocation problems. IEEE Trans. Cont. Net. Sys 1(1), 64–73 (2014)CrossRef
33.
go back to reference Gu, C., Wu, Z., Li, J., Guo, Y.: Distributed convex optimization with coupling constraints over time-varying directed graphs. arXiv:1805.07916 (2018) Gu, C., Wu, Z., Li, J., Guo, Y.: Distributed convex optimization with coupling constraints over time-varying directed graphs. arXiv:1805.​07916 (2018)
Metadata
Title
Regularized dual gradient distributed method for constrained convex optimization over unbalanced directed graphs
Publication date
14-06-2019
Published in
Numerical Algorithms / Issue 1/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00746-2

Other articles of this Issue 1/2020

Numerical Algorithms 1/2020 Go to the issue

Premium Partner