Skip to main content
Top

2025 | OriginalPaper | Chapter

Regularized Multi-LLMs Collaboration for Enhanced Score-Based Causal Discovery

Authors : Xiaoxuan Li, Yao Liu, Ruoyu Wang, Lina Yao

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the significance of understanding the cause-and-effect relationships among variables increases in the development of modern systems and algorithms, learning causality from observational data has become a preferred and efficient approach over conducting randomized control trials. However, purely observational data could be insufficient to reconstruct the true causal graph. Consequently, many researchers tried to utilise some form of prior knowledge to improve causal discovery process. In this context, the impressive capabilities of large language models (LLMs) have emerged as a promising alternative to the costly acquisition of prior expert knowledge. In this work, we further explore the potential of using LLMs to enhance causal discovery approaches, particularly focusing on score-based methods, and we propose a general framework to utilise the capacity of not only one but multiple LLMs to augment the discovery process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alonso-Barba, J.I., delaOssa, L., Gámez, J.A., Puerta, J.M.: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int. J. Approx. Reason. 54(4), 429–451 (2013) Alonso-Barba, J.I., delaOssa, L., Gámez, J.A., Puerta, J.M.: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int. J. Approx. Reason. 54(4), 429–451 (2013)
2.
go back to reference Ban, T., Chen, L., Wang, X., Chen, H.: From query tools to causal architects: harnessing large language models for advanced causal discovery from data. CoRR (2023) Ban, T., Chen, L., Wang, X., Chen, H.: From query tools to causal architects: harnessing large language models for advanced causal discovery from data. CoRR (2023)
3.
go back to reference Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3(Nov), 507–554 (2002) Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3(Nov), 507–554 (2002)
4.
go back to reference Chickering, D.M., Heckerman, D.: Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Mach. Learn. 29, 181–212 (1997) Chickering, D.M., Heckerman, D.: Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Mach. Learn. 29, 181–212 (1997)
5.
go back to reference Chowdhury, J., Rashid, R., Terejanu, G.: Evaluation of induced expert knowledge in causal structure learning by NOTEARS. In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2023. SCITEPRESS (2023) Chowdhury, J., Rashid, R., Terejanu, G.: Evaluation of induced expert knowledge in causal structure learning by NOTEARS. In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2023. SCITEPRESS (2023)
6.
go back to reference Hasan, U., Gani, M.O.: KCRL: a prior knowledge based causal discovery framework with reinforcement learning. In: Proceedings of the Machine Learning for Healthcare Conference, MLHC 2022. Proceedings of Machine Learning Research, PMLR (2022) Hasan, U., Gani, M.O.: KCRL: a prior knowledge based causal discovery framework with reinforcement learning. In: Proceedings of the Machine Learning for Healthcare Conference, MLHC 2022. Proceedings of Machine Learning Research, PMLR (2022)
7.
go back to reference Hasan, U., Gani, M.O.: KGS: causal discovery using knowledge-guided greedy equivalence search. CoRR (2023) Hasan, U., Gani, M.O.: KGS: causal discovery using knowledge-guided greedy equivalence search. CoRR (2023)
8.
go back to reference Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The combination of knowledge and statistical data. Mach, Learn 20, 197–243 (1995) Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The combination of knowledge and statistical data. Mach, Learn 20, 197–243 (1995)
9.
go back to reference Li, J., Tang, T., Zhao, W.X., Wen, J.: Pretrained language models for text generation: a survey. CoRR (2021) Li, J., Tang, T., Zhao, W.X., Wen, J.: Pretrained language models for text generation: a survey. CoRR (2021)
10.
go back to reference Long, S., Piché, A., Zantedeschi, V., Schuster, T., Drouin, A.: Causal discovery with language models as imperfect experts. CoRR (2023) Long, S., Piché, A., Zantedeschi, V., Schuster, T., Drouin, A.: Causal discovery with language models as imperfect experts. CoRR (2023)
11.
go back to reference Long, S., Schuster, T., Piché, A.: Can large language models build causal graphs? CoRR (2023) Long, S., Schuster, T., Piché, A.: Can large language models build causal graphs? CoRR (2023)
12.
go back to reference Pearl, J.: Causality: Models. Cambridge University Press, Reasoning and Inference (2009)CrossRef Pearl, J.: Causality: Models. Cambridge University Press, Reasoning and Inference (2009)CrossRef
13.
go back to reference Pearl, J.: Causality 2002-2020 - introduction. In: Probabilistic and Causal Inference: The Works of Judea Pearl. ACM Books, ACM (2022) Pearl, J.: Causality 2002-2020 - introduction. In: Probabilistic and Causal Inference: The Works of Judea Pearl. ACM Books, ACM (2022)
14.
go back to reference Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005) Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)
15.
go back to reference Shpitser, I., Pearl, J.: Complete identification methods for the causal hierarchy (2008) Shpitser, I., Pearl, J.: Complete identification methods for the causal hierarchy (2008)
16.
go back to reference Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Adaptive computation and machine learning (2000) Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Adaptive computation and machine learning (2000)
17.
go back to reference Wang, W., et al.: Prior-knowledge-driven local causal structure learning and its application on causal discovery between type 2 diabetes and bone mineral density. IEEE Access 8, 108798–108810 (2020) Wang, W., et al.: Prior-knowledge-driven local causal structure learning and its application on causal discovery between type 2 diabetes and bone mineral density. IEEE Access 8, 108798–108810 (2020)
18.
go back to reference Willig, M., Zecevic, M., Dhami, D.S., Kersting, K.: Can foundation models talk causality? CoRR (2022) Willig, M., Zecevic, M., Dhami, D.S., Kersting, K.: Can foundation models talk causality? CoRR (2022)
19.
go back to reference Zhang, B., Yang, H., Zhou, T., Babar, A., Liu, X.: Enhancing financial sentiment analysis via retrieval augmented large language models. In: 4th ACM International Conference on AI in Finance, ICAIF 2023. ACM (2023) Zhang, B., Yang, H., Zhou, T., Babar, A., Liu, X.: Enhancing financial sentiment analysis via retrieval augmented large language models. In: 4th ACM International Conference on AI in Finance, ICAIF 2023. ACM (2023)
20.
go back to reference Zheng, X., Aragam, B., Ravikumar, P., Xing, E.P.: Dags with NO TEARS: continuous optimization for structure learning. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 (2018) Zheng, X., Aragam, B., Ravikumar, P., Xing, E.P.: Dags with NO TEARS: continuous optimization for structure learning. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 (2018)
21.
go back to reference Zhu, S., Ng, I., Chen, Z.: Causal discovery with reinforcement learning. In: 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net (2020) Zhu, S., Ng, I., Chen, Z.: Causal discovery with reinforcement learning. In: 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net (2020)
Metadata
Title
Regularized Multi-LLMs Collaboration for Enhanced Score-Based Causal Discovery
Authors
Xiaoxuan Li
Yao Liu
Ruoyu Wang
Lina Yao
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_13

Premium Partner