Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Electrical Engineering 6/2022

06-07-2022 | Original Paper

Reinforcement learning-based demand-side management by smart charging of electric vehicles

Authors: Melik Bugra Ozcelik, Mert Kesici, Necati Aksoy, Istemihan Genc

Published in: Electrical Engineering | Issue 6/2022

Login to get access

Abstract

In the future, the load demand due to charging of large numbers of electric vehicles (EVs) will be at such a high level that existing networks in some regions may not afford. Therefore, radical changes modernizing the grid will be required to overcome the technical and economic problems besides bureaucratic issues. Amendments to be made in the regulations on electrical energy and new tariff regulations can be considered within this scope. Smart charging of EVs is not often dealt with a solution using reinforcement learning (RL), which is one of the most effective methods for solving such decision-making problems. Most of the studies on this topic endeavor to estimate the state and action spaces and to tune the penalty coefficients within the RL models developed. In this paper, we solve the EV charging problem using expected SARSA with a novel rewarding strategy, as we propose a new approach to determine the state and action spaces. The efficacy of the proposed method is demonstrated on the problem of charging a single EV, as we compare it with a number of alternatives involving Q-Learning and constant charging approaches.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
5.
go back to reference Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall Press, Hoboken MATH Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall Press, Hoboken MATH
7.
go back to reference Shah J, Nielsen M, Reid A, Shane C, Mathews K, Doerge D, Piel R, Anderson R, Boulanger A, Wu L, Bhandari V, Gagneja A, Kressner A, Li X, Sarkar S (2014) Cost-optimal, robust charging of electrically-fueled commercial vehicle fleets via machine learning. In: Proceedings of 8th annual IEEE international systems conference, SysCon 2014, pp 65–71. https://​doi.​org/​10.​1109/​SysCon.​2014.​6819237 Shah J, Nielsen M, Reid A, Shane C, Mathews K, Doerge D, Piel R, Anderson R, Boulanger A, Wu L, Bhandari V, Gagneja A, Kressner A, Li X, Sarkar S (2014) Cost-optimal, robust charging of electrically-fueled commercial vehicle fleets via machine learning. In: Proceedings of 8th annual IEEE international systems conference, SysCon 2014, pp 65–71. https://​doi.​org/​10.​1109/​SysCon.​2014.​6819237
12.
go back to reference Lopez KL (2019) A machine learning approach for the smart charging of electric vehicles. Dissertation, Laval University Lopez KL (2019) A machine learning approach for the smart charging of electric vehicles. Dissertation, Laval University
20.
go back to reference Valogianni K, Ketter W, Collins J (2013) Smart charging of electric vehicles using reinforcement learning. In: AAAI workshop, Technical report WS-13-15, pp 41–48 Valogianni K, Ketter W, Collins J (2013) Smart charging of electric vehicles using reinforcement learning. In: AAAI workshop, Technical report WS-13-15, pp 41–48
23.
go back to reference Sutton Richard S, Barto Andrew G (2018) Reinforcement learning: an introduction, 2nd edn. The MIT Press, Cambridge MATH Sutton Richard S, Barto Andrew G (2018) Reinforcement learning: an introduction, 2nd edn. The MIT Press, Cambridge MATH
27.
30.
go back to reference EURELECTRIC: dynamic pricing in electricity supply (February), 16 (2017) EURELECTRIC: dynamic pricing in electricity supply (February), 16 (2017)
Metadata
Title
Reinforcement learning-based demand-side management by smart charging of electric vehicles
Authors
Melik Bugra Ozcelik
Mert Kesici
Necati Aksoy
Istemihan Genc
Publication date
06-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 6/2022
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-022-01597-2

Other articles of this Issue 6/2022

Electrical Engineering 6/2022 Go to the issue