Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

05-04-2021 | Issue 1/2021

Wireless Personal Communications 1/2021

Reinforcement Learning-Based Routing in Underwater Acoustic Sensor Networks

Journal:
Wireless Personal Communications > Issue 1/2021
Authors:
B. S. Halakarnimath, A. V. Sutagundar
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Underwater acoustic sensor networks (UASNs) play an essential role in exploring the marine world applications in rivers, ponds, and oceans. In recent years, prominent developments have addressed and resolved the numerous issues of critical underwater applications. Routing is one of the vital problems discussed widely, and various protocols are designed to solve the routing-related issues effectively. In this paper, we propose reinforcement-learning based routing using Steiner-points to minimize energy consumption and enhance the network lifetime of UASNs. Initially, the sensor nodes form a group of three nodes and calculate the Steiner point for each such group. The isolated nodes and the Steiner points in the network are vertices of the Steiner tree, which is the routing path to be constructed dynamically by the sink node agent to travel with the assistance of AUV. The sink node agent in the unknown environment initiates the Steiner tree construction process by visiting either the isolated neighbor node or neighbor sensor node’s Steiner point to collect the data from sensor nodes based on the reward function and the environmental conditions. If agent visits the isolated node, then it collects the data from that node itself. If the agent visits the Steiner point, the agent broadcasts its arrival through the beacon message and intended members of that group communicate to the agent and forwards the sensed data. The agent processes the data to remove the data’s redundancy and selects the next point to be visited and constructs the Steiner tree dynamically. The performance evaluation of the proposed scheme minimized each sensor node’s energy consumption and enhanced the network’s lifetime.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue