Skip to main content
Top

2024 | OriginalPaper | Chapter

Reinforcement Learning for Layout Planning – Automated Pathway Generation for Arbitrary Factory Layouts

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the complex challenge of factory layout planning, highlighting the potential of reinforcement learning (RL) to automate and optimize pathway generation. It addresses the limitations of traditional algorithms by introducing an RL-based approach that can handle arbitrary factory layouts. The proposed algorithm efficiently generates path networks, considering crucial constraints such as material flow and transport feasibility. By accurately computing true distances and pathwidths, the algorithm provides a robust foundation for evaluating and rating factory layouts. This innovative method promises to significantly enhance the efficiency and productivity of factory design processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. In: J.UCS The Journal of Universal Computer Science, pp. 752–761 (1996). Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. In: J.UCS The Journal of Universal Computer Science, pp. 752–761 (1996).
go back to reference Bracht, U., Dahlbeck, M., Fischer, A., Krüger, T.: Combining simulation and optimization for extended double row facility layout problems in factory planning. In: Communications in Computer and Information Science (2018) Bracht, U., Dahlbeck, M., Fischer, A., Krüger, T.: Combining simulation and optimization for extended double row facility layout problems in factory planning. In: Communications in Computer and Information Science (2018)
go back to reference Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Lecture Notes in Computer Science (LNCS) (Including its subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics), vol. 1004, pp. 382–391 (1995). https://doi.org/10.1007/BFB0015444/COVER Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Lecture Notes in Computer Science (LNCS) (Including its subseries Lecture Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics), vol. 1004, pp. 382–391 (1995). https://​doi.​org/​10.​1007/​BFB0015444/​COVER
go back to reference Lee, J.: A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. Geoinformatica 8, 237–264 (2004) Lee, J.: A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. Geoinformatica 8, 237–264 (2004)
go back to reference Snook, G.: Simplified 3D movement and pathfinding using navigation meshes. In: DeLoura, M. (ed.) Game Programming Gems, pp. 288–304. Charles River Media (2000) Snook, G.: Simplified 3D movement and pathfinding using navigation meshes. In: DeLoura, M. (ed.) Game Programming Gems, pp. 288–304. Charles River Media (2000)
go back to reference Stout, B.: The basics of A* for path planning. In: DeLoura, M. (ed.) Game Programming Gems, pp. 254–263. Charles River Media (2000) Stout, B.: The basics of A* for path planning. In: DeLoura, M. (ed.) Game Programming Gems, pp. 254–263. Charles River Media (2000)
Metadata
Title
Reinforcement Learning for Layout Planning – Automated Pathway Generation for Arbitrary Factory Layouts
Authors
Hendrik Unger
Frank Börner
Daniel Fischer
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_118

Premium Partner