Skip to main content
Top
Published in:

01-12-2023 | Original Article

Relation extraction: advancements through deep learning and entity-related features

Authors: Youwen Zhao, Xiangbo Yuan, Ye Yuan, Shaoxiong Deng, Jun Quan

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the critical task of relation extraction in natural language processing, focusing on the challenges of inaccurate entity pair recognition and feature sparsity. It introduces a deep learning framework that integrates entity-related features to address these issues. The proposed method involves extracting unit features from target entity pairs and combining them into fusion features to enrich semantic information. The framework uses both convolutional and graph convolutional neural networks to capture local and global dependencies in sentences. Experimental results on various datasets showcase the effectiveness of this approach, achieving high F1-scores and outperforming existing methods. The article also discusses the importance of considering the structure of target entity pairs and incorporating multiple semantic features to enhance relation extraction performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In this study, the SanWen dataset does not include negative instances.
 
Literature
go back to reference Alt C, Hübner M, Hennig L(2019) Improving relation extraction by pre-trained language representations. arXiv preprint arXiv:1906.03088 Alt C, Hübner M, Hennig L(2019) Improving relation extraction by pre-trained language representations. arXiv preprint arXiv:​1906.​03088
go back to reference Cai R, Zhang X, Wang H (2016) Bidirectional recurrent convolutional neural network for relation classification. In: proceedings of the 54th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 756– 765 Cai R, Zhang X, Wang H (2016) Bidirectional recurrent convolutional neural network for relation classification. In: proceedings of the 54th annual meeting of the association for computational linguistics (Volume 1: Long Papers), pp 756– 765
go back to reference Cui Y, Che W, Liu T, Qin B, Wang S, Hu G (2020) Revisiting pre-trained models for chinese natural language processing. arXiv preprint arXiv:2004.13922 Cui Y, Che W, Liu T, Qin B, Wang S, Hu G (2020) Revisiting pre-trained models for chinese natural language processing. arXiv preprint arXiv:​2004.​13922
go back to reference Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding
go back to reference Fei H, Ren Y, Ji D (2020) Boundaries and edges rethinking: an end-to-end neural model for overlapping entity relation extraction. Inform Process Manage 57(6):102311CrossRef Fei H, Ren Y, Ji D (2020) Boundaries and edges rethinking: an end-to-end neural model for overlapping entity relation extraction. Inform Process Manage 57(6):102311CrossRef
go back to reference Fei H, Ren Y, Zhang Y, Ji D, Liang X (2021) Enriching contextualized language model from knowledge graph for biomedical information extraction. Brief Bioinform 22(3):110CrossRef Fei H, Ren Y, Zhang Y, Ji D, Liang X (2021) Enriching contextualized language model from knowledge graph for biomedical information extraction. Brief Bioinform 22(3):110CrossRef
go back to reference Fei H, Wu S, Li J, Li B, Li F, Qin L, Zhang M, Zhang M, Chua T-S (2022) Lasuie: unifying information extraction with latent adaptive structure-aware generative language model. Adv Neural Inf Process Syst 35:15460–15475 Fei H, Wu S, Li J, Li B, Li F, Qin L, Zhang M, Zhang M, Chua T-S (2022) Lasuie: unifying information extraction with latent adaptive structure-aware generative language model. Adv Neural Inf Process Syst 35:15460–15475
go back to reference Fei H, Ji D, Li B, Liu Y, Ren Y, Li F (2021) Rethinking boundaries: End-to-end recognition of discontinuous mentions with pointer networks. In: proceedings of the AAAI conference on artificial intelligence vol 35, pp 12785– 12793 Fei H, Ji D, Li B, Liu Y, Ren Y, Li F (2021) Rethinking boundaries: End-to-end recognition of discontinuous mentions with pointer networks. In: proceedings of the AAAI conference on artificial intelligence vol 35, pp 12785– 12793
go back to reference Fei H, Wu S, Ren Y, Zhang M (2022) Matching structure for dual learning. In: international conference on machine learning pp 6373– 6391. PMLR Fei H, Wu S, Ren Y, Zhang M (2022) Matching structure for dual learning. In: international conference on machine learning pp 6373– 6391. PMLR
go back to reference Fei H, Zhang M, Ji D(2020) Cross-lingual semantic role labeling with high-quality translated training corpus. arXiv preprint arXiv:2004.06295 Fei H, Zhang M, Ji D(2020) Cross-lingual semantic role labeling with high-quality translated training corpus. arXiv preprint arXiv:​2004.​06295
go back to reference Fei H, Zhang Y, Ren Y, Ji D(2020) Latent emotion memory for multi-label emotion classification. In: proceedings of the AAAI conference on artificial intelligence vol 34, pp 7692– 7699 Fei H, Zhang Y, Ren Y, Ji D(2020) Latent emotion memory for multi-label emotion classification. In: proceedings of the AAAI conference on artificial intelligence vol 34, pp 7692– 7699
go back to reference Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DO, Padó S, Pennacchiotti M, Romano L, Szpakowicz S (2019) Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. arXiv preprint arXiv:1911.10422 Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DO, Padó S, Pennacchiotti M, Romano L, Szpakowicz S (2019) Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. arXiv preprint arXiv:​1911.​10422
go back to reference Hu H, Sui H, Hu Q, Zhang Y, Hu Z, Ma N (2022) Runoff forecast model based on graph attention network and dual-stage attention mechanism. J Comput Appl 42(5):1607 Hu H, Sui H, Hu Q, Zhang Y, Hu Z, Ma N (2022) Runoff forecast model based on graph attention network and dual-stage attention mechanism. J Comput Appl 42(5):1607
go back to reference Kambhatla, N ( 2004) Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. In: proceedings of the ACL interactive poster and demonstration sessions pp 178– 181 Kambhatla, N ( 2004) Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. In: proceedings of the ACL interactive poster and demonstration sessions pp 178– 181
go back to reference Li J, Fei H, Liu J, Wu S, Zhang M, Teng C, Ji D, Li F ( 2022) Unified named entity recognition as word-word relation classification. In: proceedings of the AAAI conference on artificial intelligence, vol 36, pp 10965– 10973 Li J, Fei H, Liu J, Wu S, Zhang M, Teng C, Ji D, Li F ( 2022) Unified named entity recognition as word-word relation classification. In: proceedings of the AAAI conference on artificial intelligence, vol 36, pp 10965– 10973
go back to reference Liu Y, Wei F, Li S, Ji H, Zhou M, Wang H (2015) A dependency-based neural network for relation classification. arXiv preprint arXiv:1507.04646 Liu Y, Wei F, Li S, Ji H, Zhou M, Wang H (2015) A dependency-based neural network for relation classification. arXiv preprint arXiv:​1507.​04646
go back to reference Liu C, Sun W, Chao W, Che W ( 2013) Convolution neural network for relation extraction. In: international conference on advanced data mining and applications pp 231– 242. Springer Liu C, Sun W, Chao W, Che W ( 2013) Convolution neural network for relation extraction. In: international conference on advanced data mining and applications pp 231– 242. Springer
go back to reference Matthews J, Altman DG, Campbell M, Royston P (1990) Analysis of serial measurements in medical research. BMJ 300(6719):230–235CrossRef Matthews J, Altman DG, Campbell M, Royston P (1990) Analysis of serial measurements in medical research. BMJ 300(6719):230–235CrossRef
go back to reference McDonough K, Moncla L, Camp M (2019) Named entity recognition goes to old regime france: geographic text analysis for early modern french corpora. Int J Geogr Inf Sci 33(12):2498–2522CrossRef McDonough K, Moncla L, Camp M (2019) Named entity recognition goes to old regime france: geographic text analysis for early modern french corpora. Int J Geogr Inf Sci 33(12):2498–2522CrossRef
go back to reference Nguyen TH, Grishman R ( 2015) Relation extraction: Perspective from convolutional neural networks. In: proceedings of the 1st workshop on vector space modeling for natural language processing pp 39– 48 Nguyen TH, Grishman R ( 2015) Relation extraction: Perspective from convolutional neural networks. In: proceedings of the 1st workshop on vector space modeling for natural language processing pp 39– 48
go back to reference Niu F, Zhang C, Ré C, Shavlik JW (2012) Deepdive: web-scale knowledge-base construction using statistical learning and inference. VLDS 12:25–28 Niu F, Zhang C, Ré C, Shavlik JW (2012) Deepdive: web-scale knowledge-base construction using statistical learning and inference. VLDS 12:25–28
go back to reference Ojokoh B, Igbe T, Afolabi B, Daramola O (2023) A graph model with integrated pattern and query-based technique for extracting answer to questions in community question answering system. Soc Netw Anal Min 13(1):45CrossRef Ojokoh B, Igbe T, Afolabi B, Daramola O (2023) A graph model with integrated pattern and query-based technique for extracting answer to questions in community question answering system. Soc Netw Anal Min 13(1):45CrossRef
go back to reference Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Kenton L, Zettlemoyer L (2018) Deep contextualized word representations. In: Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies 1 (Long Papers), New Orleans, Louisiana, pp 2227– 2237 Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Kenton L, Zettlemoyer L (2018) Deep contextualized word representations. In: Proceedings of the 2018 conference of the north American chapter of the association for computational linguistics: human language technologies 1 (Long Papers), New Orleans, Louisiana, pp 2227– 2237
go back to reference Ranjan R, Vathsala H, Koolagudi SG (2022) Profile generation from web sources: an information extraction system. Soc Netw Anal Min 12:1–12CrossRef Ranjan R, Vathsala H, Koolagudi SG (2022) Profile generation from web sources: an information extraction system. Soc Netw Anal Min 12:1–12CrossRef
go back to reference Santos CNd, Xiang B, Zhou B (2015) Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv:1504.06580 Santos CNd, Xiang B, Zhou B (2015) Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv:​1504.​06580
go back to reference Song R, Chen X, Hong Y, Zhang m, (2019) Combination of convolutional recurrent neural network for relation extraction. J Chinese Inform Process 33(10):64–72 Song R, Chen X, Hong Y, Zhang m, (2019) Combination of convolutional recurrent neural network for relation extraction. J Chinese Inform Process 33(10):64–72
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNet Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNet
go back to reference Waheeb SA, Ahmed Khan N, Chen B, Shang X (2020) Machine learning based sentiment text classification for evaluating treatment quality of discharge summary. Information 11(5):281CrossRef Waheeb SA, Ahmed Khan N, Chen B, Shang X (2020) Machine learning based sentiment text classification for evaluating treatment quality of discharge summary. Information 11(5):281CrossRef
go back to reference Walker C, Strassel S, J M (2006) Ace 2005 multilingual training corpus. progress of theoretical physics supplement 110( 110), 261– 276 Walker C, Strassel S, J M (2006) Ace 2005 multilingual training corpus. progress of theoretical physics supplement 110( 110), 261– 276
go back to reference Wang J, Lu W (2020) Two are better than one: Joint entity and relation extraction with table-sequence encoders. arXiv preprint arXiv:2010.03851 Wang J, Lu W (2020) Two are better than one: Joint entity and relation extraction with table-sequence encoders. arXiv preprint arXiv:​2010.​03851
go back to reference Wang H, Qin K, Zakari RY, Lu G, Yin J (2022) Deep neural network-based relation extraction: an overview. Neural Comput Appl 1–21 Wang H, Qin K, Zakari RY, Lu G, Yin J (2022) Deep neural network-based relation extraction: an overview. Neural Comput Appl 1–21
go back to reference Wu S, Fei H, Ren Y, Ji D, Li J (2021) Learn from syntax: Improving pair-wise aspect and opinion terms extraction with rich syntactic knowledge. arXiv preprint arXiv:2105.02520 Wu S, Fei H, Ren Y, Ji D, Li J (2021) Learn from syntax: Improving pair-wise aspect and opinion terms extraction with rich syntactic knowledge. arXiv preprint arXiv:​2105.​02520
go back to reference Xu J, Wen J, Sun X, Su Q (2017) A discourse-level named entity recognition and relation extraction dataset for chinese literature text. arXiv preprint arXiv:1711.07010 Xu J, Wen J, Sun X, Su Q (2017) A discourse-level named entity recognition and relation extraction dataset for chinese literature text. arXiv preprint arXiv:​1711.​07010
go back to reference Yang W, Qin Y, Huang R ( 2021) Sentence structure acquisition method for chinese relation extraction. p 16 Yang W, Qin Y, Huang R ( 2021) Sentence structure acquisition method for chinese relation extraction. p 16
go back to reference Yu H, Qian L, Zhou G, Zhu Q (2010) Chinese semantic relation extraction based on unified syntactic and entity semantic tree. J Chinese Inform Process 24(5):17–23 Yu H, Qian L, Zhou G, Zhu Q (2010) Chinese semantic relation extraction based on unified syntactic and entity semantic tree. J Chinese Inform Process 24(5):17–23
go back to reference Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J ( 2014) Relation classification via convolutional deep neural network. In: proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers pp 2335– 2344 Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J ( 2014) Relation classification via convolutional deep neural network. In: proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers pp 2335– 2344
go back to reference Zhang J, Hao K, Tang X-S, Cai X, Xiao Y, Wang T (2020) A multi-feature fusion model for chinese relation extraction with entity sense. Knowl-Based Syst 206:106348CrossRef Zhang J, Hao K, Tang X-S, Cai X, Xiao Y, Wang T (2020) A multi-feature fusion model for chinese relation extraction with entity sense. Knowl-Based Syst 206:106348CrossRef
go back to reference Zhang C, Zhang X, Jiang W, Shen Q, Zhang S ( 2009) Rule-based extraction of spatial relations in natural language text. In: 2009 international conference on computational intelligence and software engineering pp 1– 4. IEEE Zhang C, Zhang X, Jiang W, Shen Q, Zhang S ( 2009) Rule-based extraction of spatial relations in natural language text. In: 2009 international conference on computational intelligence and software engineering pp 1– 4. IEEE
go back to reference Zhao Q, Gao T, Guo N (2023) A novel Chinese relation extraction method using polysemy rethinking mechanism. Appl Intell 53(7):7665–7676CrossRef Zhao Q, Gao T, Guo N (2023) A novel Chinese relation extraction method using polysemy rethinking mechanism. Appl Intell 53(7):7665–7676CrossRef
go back to reference Zheng S, Xu J, Zhou P, Bao H, Qi Z, Xu B (2016) A neural network framework for relation extraction: learning entity semantic and relation pattern. Knowl-Based Syst 114:12–23CrossRef Zheng S, Xu J, Zhou P, Bao H, Qi Z, Xu B (2016) A neural network framework for relation extraction: learning entity semantic and relation pattern. Knowl-Based Syst 114:12–23CrossRef
go back to reference Zhou G, Su J, Zhang J, Zhang M ( 2005) Exploring various knowledge in relation extraction. In: proceedings of the 43rd annual meeting of the association for computational linguistics (acl’05) pp 427– 434 Zhou G, Su J, Zhang J, Zhang M ( 2005) Exploring various knowledge in relation extraction. In: proceedings of the 43rd annual meeting of the association for computational linguistics (acl’05) pp 427– 434
go back to reference Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B ( 2016) Attention-based bidirectional long short-term memory networks for relation classification. In: proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: Short Papers), pp 207– 212 Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B ( 2016) Attention-based bidirectional long short-term memory networks for relation classification. In: proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: Short Papers), pp 207– 212
go back to reference Zhu H, Lin Y, Liu Z, Fu J, Chua T-S, Sun M (2019) Graph neural networks with generated parameters for relation extraction. arXiv preprint arXiv:1902.00756 Zhu H, Lin Y, Liu Z, Fu J, Chua T-S, Sun M (2019) Graph neural networks with generated parameters for relation extraction. arXiv preprint arXiv:​1902.​00756
Metadata
Title
Relation extraction: advancements through deep learning and entity-related features
Authors
Youwen Zhao
Xiangbo Yuan
Ye Yuan
Shaoxiong Deng
Jun Quan
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01095-8

Premium Partner