Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Relaxing Stiff System Integration by Smoothing Techniques for Non-iterative Co-simulation

Authors : Martin Benedikt, Edo Drenth

Published in: IUTAM Symposium on Solver-Coupling and Co-Simulation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Non-iterative or weak-coupling is the most applicable scheme for the co-simulation of interacting subsystems, where subsystems are solved independently with data exchange at restricted time instants. This contribution analyzes the continuous co-simulation from a different, a system-oriented, point of view and three coupling challenges are identified: co-simulation discretization error, sampling and discontinuities introduced. Introduction of smoothing filters can be interpreted as an additional co-simulation discretization error and affects the entire system behavior in general. However, energy-preservation-based considerations has proven to improve co-simulation performance, enabling filter applications according to the communication step-size, where mitigated frequency parts are added by the recently proposed correction schemes. This way, numerical stiffness is relaxed by an energy preserving mapping of high frequencies into low frequency ranges, based on Parseval’s identity. The proposed approaches are demonstrated along a theoretical as well as an industrial co-simulation example.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Herein it is assumed that no further co-simulation capabilities are supported by the simulation tools, as for example the provision and utilization of partial derivatives as specified in FMI 2.0.
 
2
Modelica library has velocity generators with build-in low pass filters to make it mathematically sound. However, these simple one- or two pole low pass filters dissipate energy. Physics-based low pass filters allow tuning such that energy loss can be controlled and preserved up to solver tolerances if required.
 
3
It is worthy to point out that the macro-step size is the single tuning parameter of the energy-preserving anti-aliasing filters.
 
Literature
4.
go back to reference Functional Mock-up Interface (FMI), A tool independent standard to support both model exchange and co-simulation of dynamic models using a combination of xml-files and compiled C-code. www.fmi-standard.org (2018). Accessed 31 Jan 2018 Functional Mock-up Interface (FMI), A tool independent standard to support both model exchange and co-simulation of dynamic models using a combination of xml-files and compiled C-code. www.​fmi-standard.​org (2018). Accessed 31 Jan 2018
5.
go back to reference Blochwitz, T. et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International Modelica Conference, Munich, Germany (2012) Blochwitz, T. et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International Modelica Conference, Munich, Germany (2012)
6.
go back to reference Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93–113 (2000)CrossRef Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93–113 (2000)CrossRef
7.
go back to reference Busch, M.: Zur effizienten Kopplung von Simulations programmen. Dissertation, Kassel University (2012) Busch, M.: Zur effizienten Kopplung von Simulations programmen. Dissertation, Kassel University (2012)
9.
go back to reference Kübler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Sys. Dyn. 4, 107–127 (2000)CrossRef Kübler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Sys. Dyn. 4, 107–127 (2000)CrossRef
10.
go back to reference Arnold, M., Schiehlen, W. (eds.): Simulation Techniques for Applied Dynamics. CISM Course and Lectures, vol. 507. Springer, Vienna (2009) Arnold, M., Schiehlen, W. (eds.): Simulation Techniques for Applied Dynamics. CISM Course and Lectures, vol. 507. Springer, Vienna (2009)
11.
go back to reference Sun, J., Grotstollen, H.: Fast time-domain simulation by waveform relaxation methods. In: 27th Annual IEEE Power Electronics Specialists Conference (1996) Sun, J., Grotstollen, H.: Fast time-domain simulation by waveform relaxation methods. In: 27th Annual IEEE Power Electronics Specialists Conference (1996)
12.
go back to reference Hairer, E., Wanner, G.: Solving Ordinary Differential Equations Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2010)MATH Hairer, E., Wanner, G.: Solving Ordinary Differential Equations Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2010)MATH
13.
go back to reference Arnold, M., Burgermeister, B., Eichberger, A.: Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody Syst. Dyn. 17(2), 99–117 (2007)MathSciNetCrossRef Arnold, M., Burgermeister, B., Eichberger, A.: Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody Syst. Dyn. 17(2), 99–117 (2007)MathSciNetCrossRef
14.
go back to reference Burgermeister, B., Arnold, M., Esterl, B.: DAE time integration for real-time applications in multi-body dynamics. ZAMM, Z. Angew. Math. Mech. 86(10), 759–771 (2006)MathSciNetCrossRef Burgermeister, B., Arnold, M., Esterl, B.: DAE time integration for real-time applications in multi-body dynamics. ZAMM, Z. Angew. Math. Mech. 86(10), 759–771 (2006)MathSciNetCrossRef
15.
go back to reference Sicklinger, S., et al.: Interface Jacobian-based co-simulation. Int. J. Numer. Methods Eng. 98(6), 418–444 (2014)MathSciNetCrossRef Sicklinger, S., et al.: Interface Jacobian-based co-simulation. Int. J. Numer. Methods Eng. 98(6), 418–444 (2014)MathSciNetCrossRef
16.
go back to reference Elmqvist, H., Olsson, H., Belsky, V., Engelmann, B.: Co-simulation Procedures Using Full Derivatives Of Output Variables. Dassault Systmes, EP2680157A1 (2014) Elmqvist, H., Olsson, H., Belsky, V., Engelmann, B.: Co-simulation Procedures Using Full Derivatives Of Output Variables. Dassault Systmes, EP2680157A1 (2014)
17.
go back to reference Viel, A.: Implementing stabilized co-simulation of strongly coupled systems using the Functional Mock-up Interface 2.0. In: Proceedings of the 10th International Modelica Conference, Lund, Sweden (2014) Viel, A.: Implementing stabilized co-simulation of strongly coupled systems using the Functional Mock-up Interface 2.0. In: Proceedings of the 10th International Modelica Conference, Lund, Sweden (2014)
18.
go back to reference Sadjina, S., Pedersen, E.: Energy Conservation and Coupling Error Reduction in Non-iterative Co-simulations. Cornell University Library (2016). arXiv:1606.05168 Sadjina, S., Pedersen, E.: Energy Conservation and Coupling Error Reduction in Non-iterative Co-simulations. Cornell University Library (2016). arXiv:​1606.​05168
19.
go back to reference Sadjina, S., Kyllingstad, L.T., Pedersen, E., Skjong, S.: Energy Conservation and Power Bonds in Co-simulations: Non-iterative Adaptive Step Size Control and Error Estimation. Computing Research Repository (2016). arXiv:1602.06434 Sadjina, S., Kyllingstad, L.T., Pedersen, E., Skjong, S.: Energy Conservation and Power Bonds in Co-simulations: Non-iterative Adaptive Step Size Control and Error Estimation. Computing Research Repository (2016). arXiv:​1602.​06434
20.
go back to reference Braun, R., Krus, P.: Tool-Independent Distributed Simulations Using Transmission Line Elements And The Functional Mock-up Interface. Linköping University, Division of Fluid and Mechatronic Systems, SE-58183 Linköping, Sweden (2013) Braun, R., Krus, P.: Tool-Independent Distributed Simulations Using Transmission Line Elements And The Functional Mock-up Interface. Linköping University, Division of Fluid and Mechatronic Systems, SE-58183 Linköping, Sweden (2013)
21.
go back to reference Fernández, J., Kofman, E.: A stand-alone quantized state system solver for continuous system simulation. J. Simul. Soc. Comput. Simul. Int. 90(7), 782–799 (2014) Fernández, J., Kofman, E.: A stand-alone quantized state system solver for continuous system simulation. J. Simul. Soc. Comput. Simul. Int. 90(7), 782–799 (2014)
22.
go back to reference Andersson, C.: A software framework for implementation and evaluation of co-simulation algorithms. Lund University (2013) Andersson, C.: A software framework for implementation and evaluation of co-simulation algorithms. Lund University (2013)
23.
go back to reference Benedikt, M., Watzenig, D., Hofer, A.: Modelling and analysis of the non-iterative coupling process for co-simulation. Math. Comp. Model. Dyn. 9(6), 451–470 (2013)MathSciNetCrossRef Benedikt, M., Watzenig, D., Hofer, A.: Modelling and analysis of the non-iterative coupling process for co-simulation. Math. Comp. Model. Dyn. 9(6), 451–470 (2013)MathSciNetCrossRef
24.
go back to reference Benedikt, M., Watzenig, D., Zehetner, J., Hofer, A.: NEPCE A nearly energy-preserving coupling element for weak-coupled problems and co-simulations. ECCOMAS Computational Methods for Coupled Problems in Science and Engineering V, Ibiza (2013) Benedikt, M., Watzenig, D., Zehetner, J., Hofer, A.: NEPCE A nearly energy-preserving coupling element for weak-coupled problems and co-simulations. ECCOMAS Computational Methods for Coupled Problems in Science and Engineering V, Ibiza (2013)
25.
go back to reference Kossel, R., Strupp, N. and Tegethoff, W.: Effects of tool coupling on transient simulation of a mobile air-conditioning cycle. In: Proceedings of the 7th International Modelica Conference, pp. 318–325. The Modelica Association (2009) Kossel, R., Strupp, N. and Tegethoff, W.: Effects of tool coupling on transient simulation of a mobile air-conditioning cycle. In: Proceedings of the 7th International Modelica Conference, pp. 318–325. The Modelica Association (2009)
26.
go back to reference Janschek, K.: Mechatronic Systems Design: Methods, models, Concepts. vol. XXI, 805 p. (2012). ISBN: 978-3-642-17530-5CrossRef Janschek, K.: Mechatronic Systems Design: Methods, models, Concepts. vol. XXI, 805 p. (2012). ISBN: 978-3-642-17530-5CrossRef
27.
go back to reference Kraft, J., Meyer, T., Schweizer, B.: Reduction of computation time by parallelization and incorporating co-simulation techniques. In: IUTAM Symposium on Co-simulation and Solver-Couping, Darmstadt, Germany (2017). (to be published) Kraft, J., Meyer, T., Schweizer, B.: Reduction of computation time by parallelization and incorporating co-simulation techniques. In: IUTAM Symposium on Co-simulation and Solver-Couping, Darmstadt, Germany (2017). (to be published)
28.
go back to reference Benedikt, M., Hofer, A.: Guidelines for the application of a coupling method for non-iterative co-simulation. In: IEEE, 8th Congress on Modelling and Simulation (EUROSIM), Cardiff, Wales (2013) Benedikt, M., Hofer, A.: Guidelines for the application of a coupling method for non-iterative co-simulation. In: IEEE, 8th Congress on Modelling and Simulation (EUROSIM), Cardiff, Wales (2013)
29.
go back to reference Benedikt, M.: A coupling methodology for non-iterative co-simulation. Ph.D. Thesis, Graz University of Technology (2012) Benedikt, M.: A coupling methodology for non-iterative co-simulation. Ph.D. Thesis, Graz University of Technology (2012)
30.
go back to reference Oppenheim, A., Schafer, R., Buck, J.: Discrete Time Signal Processing, 2nd edn. Prentice Hall, Upper Saddle River (1999) Oppenheim, A., Schafer, R., Buck, J.: Discrete Time Signal Processing, 2nd edn. Prentice Hall, Upper Saddle River (1999)
31.
go back to reference Drenth, E.: Robust co-simulation methodology of physical systems. In: 9th Graz Symposium Virtual Vehicle (2016) Drenth, E.: Robust co-simulation methodology of physical systems. In: 9th Graz Symposium Virtual Vehicle (2016)
32.
go back to reference Drenth, E.: VVA20160303 VVA Co-Simulation Benchmark: Lumped Propeller Shaft. Volvo Car Corporation (2016) Drenth, E.: VVA20160303 VVA Co-Simulation Benchmark: Lumped Propeller Shaft. Volvo Car Corporation (2016)
33.
go back to reference Drenth, E.: VVA20170302 VVA Co-Simulation Benchmark: FOC Electric Machine Co-Simulation. Volvo Car Corporation (2016) Drenth, E.: VVA20170302 VVA Co-Simulation Benchmark: FOC Electric Machine Co-Simulation. Volvo Car Corporation (2016)
34.
go back to reference Benedikt, M., Watzenig, D., Bernasch, J.: Coupling method for non-iterative co-simulation. Das virtuelles Fahrzeug, EP2442248(B1) (2010) Benedikt, M., Watzenig, D., Bernasch, J.: Coupling method for non-iterative co-simulation. Das virtuelles Fahrzeug, EP2442248(B1) (2010)
35.
go back to reference Drenth, E.: Method and System for Control and Co-Simulation of Physical Systems. Volvo Car Corporation, EP3136267(A1) (2015) Drenth, E.: Method and System for Control and Co-Simulation of Physical Systems. Volvo Car Corporation, EP3136267(A1) (2015)
Metadata
Title
Relaxing Stiff System Integration by Smoothing Techniques for Non-iterative Co-simulation
Authors
Martin Benedikt
Edo Drenth
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-14883-6_1

Premium Partner