Skip to main content
Top

2021 | OriginalPaper | Chapter

9. Reliability Prediction

Author : Ivo Häring

Published in: Technical Safety, Reliability and Resilience

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reliability prediction of a system estimates the probability that the system fails in a certain time interval given system context information. To this aim, several standards based on different data, failure modes, and models have been developed.The chapter provides a tabular comparison of standards as well as formal expressions that are necessary to understand their structure. It defines the term reliability as a time-dependent probability expression of a system. Related terms like availability, dependability are distinguished. The following terms are related to each other: failure density distribution, failure probability, reliability, and failure rate. Expressions are provided for the Weibull, exponential, and lognormal distributions. It is shown that most reliability prediction standards only use constant exponential failure rates as opposed to the more realistic bath-tube distribution. Multiplicative, additive, and mixed reliability prediction standards are distinguished, also standards that consider components only or standards that in addition consider system development conditions. Existing standards are compared regarding, inter alia, their coverage of types of environmental stress, component functional loading and mission profiles of systems under consideration as well as failure models used, and component and technologies covered. To this end, a comprehensive list of comparison items for standards and related software tools is provided. The chapter shows that reliability prediction complements the range of system analysis methods by providing frequency of event input for fault tree analysis (FTA), failure mode and effects analysis (FMEA), and Markov analysis. As field data is more easily accessible due to increasing sensing, intelligence, and connectivity, it is expected that scaling, updating, and even generation of empirical reliability prediction become feasible in ever-increasing application domains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Birolini, A. (1991). Qualität und Zuverlässigkeit technischer Systeme. Berlin, Heidelberg, Springer. Birolini, A. (1991). Qualität und Zuverlässigkeit technischer Systeme. Berlin, Heidelberg, Springer.
go back to reference Birolini, A. (2007). Reliability Engineering: Theory and Practice, Springer Berlin. Birolini, A. (2007). Reliability Engineering: Theory and Practice, Springer Berlin.
go back to reference Bowles, J. B. (1992). “A Survey of Reliability-Prediction Procedures For Microelectronic Devices.” IEEE Transactions on Reliability 41(1): 2–12. Bowles, J. B. (1992). “A Survey of Reliability-Prediction Procedures For Microelectronic Devices.” IEEE Transactions on Reliability 41(1): 2–12.
go back to reference Denson, W. (1998). “The History of Reliability Prediction.” IEEE Transactions on Reliability 47(3-SP): 321–328. Denson, W. (1998). “The History of Reliability Prediction.” IEEE Transactions on Reliability 47(3-SP): 321–328.
go back to reference Department Of Defense (1986). Military Handbook - Reliability Prediction of Electronic Equipment (MIL-HDBK-217E), U.S. Government Painting Office. Department Of Defense (1986). Military Handbook - Reliability Prediction of Electronic Equipment (MIL-HDBK-217E), U.S. Government Painting Office.
go back to reference ECSS (2006). Space Product assurance - Components reliability data sources and their use, Noordwijk, The Netherlands, ESA Publications Division. ECSS (2006). Space Product assurance - Components reliability data sources and their use, Noordwijk, The Netherlands, ESA Publications Division.
go back to reference EMPA. (2009). “Markoff-Modelle.” Retrieved from 2012-04-02. EMPA. (2009). “Markoff-Modelle.” Retrieved from 2012-04-02.
go back to reference Glose, D (2008): Zuverlässigkeitsvorhersage für elektronische Komponenten unter mechanischer Belastung, Reliability predicition of electronic components for mechanical stress environment. Hochschule Kempten, University of Applied Sciences; Fraunhofer EMI, Efringen-Kirchen. Glose, D (2008): Zuverlässigkeitsvorhersage für elektronische Komponenten unter mechanischer Belastung, Reliability predicition of electronic components for mechanical stress environment. Hochschule Kempten, University of Applied Sciences; Fraunhofer EMI, Efringen-Kirchen.
go back to reference Hansen, P. (2009). Entwicklung eines energetischen Sanierungsmodells für den europäischen Wohngebäudesektor unter dem Aspekt der Erstellung von Szenarien für Energieund CO2-Einsparpotenziale bis 2030, Forschungszentrum Jülich. Hansen, P. (2009). Entwicklung eines energetischen Sanierungsmodells für den europäischen Wohngebäudesektor unter dem Aspekt der Erstellung von Szenarien für Energieund CO2-Einsparpotenziale bis 2030, Forschungszentrum Jülich.
go back to reference Hoppe, W. and P. Schwederski (2009). Comparison of 4 Reliability Prediction Approaches for realistic failure rates of electronic parts required for Safety & Reliability Analysis. Zuverlässigkeit und Entwurf - 3. GMM/GI/ITG-Fachtagung. Stuttgart, Germany. Hoppe, W. and P. Schwederski (2009). Comparison of 4 Reliability Prediction Approaches for realistic failure rates of electronic parts required for Safety & Reliability Analysis. Zuverlässigkeit und Entwurf - 3. GMM/GI/ITG-Fachtagung. Stuttgart, Germany.
go back to reference IEC 60050-191 (1990). Internationales Elektrotechnisches Wörterbuch. Genf, International Electrotechnical Commission. IEC 60050-191 (1990). Internationales Elektrotechnisches Wörterbuch. Genf, International Electrotechnical Commission.
go back to reference IEC 61508 S+ (2010). Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems Ed. 2 Geneva, International Electrotechnical Commission. IEC 61508 S+ (2010). Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems Ed. 2 Geneva, International Electrotechnical Commission.
go back to reference IEEE-Guide (2003). “IEEE Guide for selecting and using reliability prediction based on IEEE 1413.” IEEE-Guide (2003). “IEEE Guide for selecting and using reliability prediction based on IEEE 1413.”
go back to reference Jones, J. and J. Hayes (2001). “Estimation of System Reliability Using a “Non-Constant Failure Rate” Model.” IEEE Transaction on Reliability 50(3): 286–288. Jones, J. and J. Hayes (2001). “Estimation of System Reliability Using a “Non-Constant Failure Rate” Model.” IEEE Transaction on Reliability 50(3): 286–288.
go back to reference Leibniz-Rechenzentrum. (2004). “Verweildaueranalyse, auch: Verlaufsdatenanalyse, Ereignisanalyse, Survival-Analyse (engl.: Survival Analysis, Analysis of Failure Times, Event History Analysis).” Retrieved 2012-04-11, from http://www.lrz.de/~wlm/ilm_v8.htm. Leibniz-Rechenzentrum. (2004). “Verweildaueranalyse, auch: Verlaufsdatenanalyse, Ereignisanalyse, Survival-Analyse (engl.: Survival Analysis, Analysis of Failure Times, Event History Analysis).” Retrieved 2012-04-11, from http://​www.​lrz.​de/​~wlm/​ilm_​v8.​htm.
go back to reference Meier, S. and I. Häring (2010). Zuverlässigkeitsanalyse der an der induktiven Datenübertragung beteiligten Schaltungsteile eines eingebetteten Systems. Praxisarbeit DHBW Lörrach/EMI-Bericht, Fraunhofer Ernst-Mach-Institiut. Meier, S. and I. Häring (2010). Zuverlässigkeitsanalyse der an der induktiven Datenübertragung beteiligten Schaltungsteile eines eingebetteten Systems. Praxisarbeit DHBW Lörrach/EMI-Bericht, Fraunhofer Ernst-Mach-Institiut.
go back to reference Meyna, A. and B. Pauli (2003). Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik; Quantitative Bewertungsverfahren. München, Hanser. Meyna, A. and B. Pauli (2003). Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik; Quantitative Bewertungsverfahren. München, Hanser.
go back to reference Ringwald, M. and I. Häring (2010). Zuverlässigkeitsanalyse der Elektronik einer Sensorplatine. Praxisarbeit DHBW Lörrach/ EMI-Bericht, Fraunhofer Ernst-Mach-Institiut. Ringwald, M. and I. Häring (2010). Zuverlässigkeitsanalyse der Elektronik einer Sensorplatine. Praxisarbeit DHBW Lörrach/ EMI-Bericht, Fraunhofer Ernst-Mach-Institiut.
go back to reference Vintr, M. (2007). Tools for Reliability Prediction of Systems, Brno University of Technology. Vintr, M. (2007). Tools for Reliability Prediction of Systems, Brno University of Technology.
go back to reference Wong, K. L. (1989). “The Roller-Coaster Curve is in.” Quality and Reliability Engineering int. 5: 29–36. Wong, K. L. (1989). “The Roller-Coaster Curve is in.” Quality and Reliability Engineering int. 5: 29–36.
go back to reference Wong, K. L. (1995). “A New Framework For Part Failure-Rate Prediction Models.” IEEE Transaction on Reliability 44(1): 139–146. Wong, K. L. (1995). “A New Framework For Part Failure-Rate Prediction Models.” IEEE Transaction on Reliability 44(1): 139–146.
Metadata
Title
Reliability Prediction
Author
Ivo Häring
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4272-9_9