Skip to main content
Top

2024 | OriginalPaper | Chapter

Remaining Useful Life Prediction of Machinery Equipment via Deep Learning Approach Based on Separable CNN and Bi-LSTM

Authors : İbrahim Eke, Ahmet Kara

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical role of predictive maintenance in industrial and manufacturing sectors, emphasizing the importance of accurate remaining useful life (RUL) prediction. Traditional methods, while valuable, face limitations in handling complex data. The author introduces a deep learning approach that leverages separable convolutional neural networks (CNNs) and bidirectional long short-term memory (Bi-LSTM) to extract spatial-temporal features from historical data. The proposed model, validated on the FEMTO Bearing dataset, demonstrates superior performance compared to traditional methods, offering a promising solution for proactive maintenance and increased efficiency in machinery operations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wei, Y., Wu, D., Terpenny, J.: Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism. Mech. Syst. Signal Process 188, 110010 (2023)CrossRef Wei, Y., Wu, D., Terpenny, J.: Bearing remaining useful life prediction using self-adaptive graph convolutional networks with self-attention mechanism. Mech. Syst. Signal Process 188, 110010 (2023)CrossRef
2.
go back to reference Ouadah, A., Zemmouchi-Ghomari, L., Salhi, N.: Selecting an appropriate supervised machine learning algorithm for predictive maintenance. Int. J. Adv. Manuf. Technol. 119(7–8), 4277–4301 (2022)CrossRef Ouadah, A., Zemmouchi-Ghomari, L., Salhi, N.: Selecting an appropriate supervised machine learning algorithm for predictive maintenance. Int. J. Adv. Manuf. Technol. 119(7–8), 4277–4301 (2022)CrossRef
3.
go back to reference Shen, Y., Tang, B., Li, B., Tan, Q., Wu, Y.: Remaining useful life prediction of rolling bearing based on multi-head attention embedded Bi-LSTM network. Measurement 202, 111803 (2022)CrossRef Shen, Y., Tang, B., Li, B., Tan, Q., Wu, Y.: Remaining useful life prediction of rolling bearing based on multi-head attention embedded Bi-LSTM network. Measurement 202, 111803 (2022)CrossRef
4.
go back to reference Ahmad, W., Khan, S.A., Islam, M.M.M., Kim, J.M.: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models. Reliab. Eng. Syst. Saf. 184, 67–76 (2019)CrossRef Ahmad, W., Khan, S.A., Islam, M.M.M., Kim, J.M.: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models. Reliab. Eng. Syst. Saf. 184, 67–76 (2019)CrossRef
5.
go back to reference Rathore, M.S., Harsha, S.P.: An attention-based stacked BiLSTM framework for predicting remaining useful life of rolling bearings. Appl. Soft. Comput. 131, 109765 (2022)CrossRef Rathore, M.S., Harsha, S.P.: An attention-based stacked BiLSTM framework for predicting remaining useful life of rolling bearings. Appl. Soft. Comput. 131, 109765 (2022)CrossRef
6.
go back to reference Jiang, J.R., Lee, J.E., Zeng, Y.M.: Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life. Sensors 20(1), 166 (2019)CrossRef Jiang, J.R., Lee, J.E., Zeng, Y.M.: Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life. Sensors 20(1), 166 (2019)CrossRef
7.
go back to reference Ren, L., Sun, Y., Wang, H., Zhang, L.: Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access 6, 13041–13049 (2018)CrossRef Ren, L., Sun, Y., Wang, H., Zhang, L.: Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access 6, 13041–13049 (2018)CrossRef
8.
go back to reference Yang, J., Peng, Y., Xie, J., Wang, P.: Remaining useful life prediction method for bearings based on LSTM with uncertainty quantification. Sensors 22(12), 4549 (2022)CrossRef Yang, J., Peng, Y., Xie, J., Wang, P.: Remaining useful life prediction method for bearings based on LSTM with uncertainty quantification. Sensors 22(12), 4549 (2022)CrossRef
9.
go back to reference Gupta, M., Wadhvani, R., Rasool, A.: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network. Knowl. Based Syst. 259, 110070 (2023)CrossRef Gupta, M., Wadhvani, R., Rasool, A.: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network. Knowl. Based Syst. 259, 110070 (2023)CrossRef
10.
go back to reference Xu, Z., et al.: A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model. Comput. Ind. Eng. 176, 108999 (2023)CrossRef Xu, Z., et al.: A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model. Comput. Ind. Eng. 176, 108999 (2023)CrossRef
11.
go back to reference Sun, B., Liu, X., Wang, J., Wei, X., Yuan, H., Dai, H.: Short-term performance degradation prediction of a commercial vehicle fuel cell system based on CNN and LSTM hybrid neural network. Int. J. Hydrogen Energy 48(23), 8613–8628 (2023)CrossRef Sun, B., Liu, X., Wang, J., Wei, X., Yuan, H., Dai, H.: Short-term performance degradation prediction of a commercial vehicle fuel cell system based on CNN and LSTM hybrid neural network. Int. J. Hydrogen Energy 48(23), 8613–8628 (2023)CrossRef
12.
go back to reference Chang, Z.H., Yuan, W., Huang, K.: Remaining useful life prediction for rolling bearings using multi-layer grid search and LSTM. Comput. Electr. Eng. 101, 108083 (2022)CrossRef Chang, Z.H., Yuan, W., Huang, K.: Remaining useful life prediction for rolling bearings using multi-layer grid search and LSTM. Comput. Electr. Eng. 101, 108083 (2022)CrossRef
13.
go back to reference Chen, Y., Zhang, D., Zhang, W.: MSWR-LRCN: a new deep learning approach to remaining useful life estimation of bearings. Control Eng. Pract. 118, 104969 (2022)CrossRef Chen, Y., Zhang, D., Zhang, W.: MSWR-LRCN: a new deep learning approach to remaining useful life estimation of bearings. Control Eng. Pract. 118, 104969 (2022)CrossRef
14.
go back to reference Wang, B., Lei, Y., Li, N., Yan, T.: Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process 134, 106330 (2019)CrossRef Wang, B., Lei, Y., Li, N., Yan, T.: Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process 134, 106330 (2019)CrossRef
15.
go back to reference Yan, X., She, D., Xu, Y.: Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions. Expert Syst. Appl. 216, 119479 (2023)CrossRef Yan, X., She, D., Xu, Y.: Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions. Expert Syst. Appl. 216, 119479 (2023)CrossRef
16.
go back to reference Hammad, M., Pławiak, P., Wang, K., Acharya, U.R.: ResNet-Attention model for human authentication using ECG signals. Expert Syst. 38(6), e12547 (2021)CrossRef Hammad, M., Pławiak, P., Wang, K., Acharya, U.R.: ResNet-Attention model for human authentication using ECG signals. Expert Syst. 38(6), e12547 (2021)CrossRef
17.
go back to reference Yu, J., Zhang, C., Wang, S.: Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes. Neural Comput. Appl. 33(8), 3085–3104 (2021)CrossRef Yu, J., Zhang, C., Wang, S.: Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes. Neural Comput. Appl. 33(8), 3085–3104 (2021)CrossRef
18.
go back to reference Shang, R., He, J., Wang, J., Xu, K., Jiao, L., Stolkin, R.: Dense connection and depthwise separable convolution-based CNN for polarimetric SAR image classification. Knowl. Based Syst. 194, 105542 (2020)CrossRef Shang, R., He, J., Wang, J., Xu, K., Jiao, L., Stolkin, R.: Dense connection and depthwise separable convolution-based CNN for polarimetric SAR image classification. Knowl. Based Syst. 194, 105542 (2020)CrossRef
19.
go back to reference Huang, G., Zhang, Y., Ou, J.: Transfer remaining useful life estimation of bearing using depth-wise separable convolution recurrent network. Measurement 176, 109090 (2021)CrossRef Huang, G., Zhang, Y., Ou, J.: Transfer remaining useful life estimation of bearing using depth-wise separable convolution recurrent network. Measurement 176, 109090 (2021)CrossRef
20.
go back to reference Dong, S., Xiao, J., Hu, X., Fang, N., Liu, L., Yao, J.: Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing. Reliab. Eng. Syst. Saf. 230, 108914 (2023)CrossRef Dong, S., Xiao, J., Hu, X., Fang, N., Liu, L., Yao, J.: Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing. Reliab. Eng. Syst. Saf. 230, 108914 (2023)CrossRef
21.
go back to reference Nectoux, P., et al.: PRONOSTIA: an experimental platform for bearings accelerated degradation tests. In: IEEE International Conference on Prognostics and Health Management, PHM 2012, pp. 1–8 (2012) Nectoux, P., et al.: PRONOSTIA: an experimental platform for bearings accelerated degradation tests. In: IEEE International Conference on Prognostics and Health Management, PHM 2012, pp. 1–8 (2012)
Metadata
Title
Remaining Useful Life Prediction of Machinery Equipment via Deep Learning Approach Based on Separable CNN and Bi-LSTM
Authors
İbrahim Eke
Ahmet Kara
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_13

Premium Partners