Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Electronic Materials 4/2021

22-01-2021 | Original Research Article

Remarkably Elevated Permittivity Achieved in PVDF/1D La2TiO5 Composite Film Materials with Low-Level Dielectric Loss by Adding 2D V2C MXene Phase

Authors: Yefeng Feng, Xiaomiao Zhao, Peiyao Chen, Maolin Bo, Qihuang Deng, Anning Zhao, Junjie Fu

Published in: Journal of Electronic Materials | Issue 4/2021

Login to get access
share
SHARE

Abstract

High-dielectric-constant (high-k) polymer–ceramic composites with low-level dielectric loss are expected to enable excellent energy storage. However, high conductivity and high dielectric loss often occur simultaneously with high dielectric constant. To obtain a high dielectric constant but with low conductivity and low dielectric loss, in this work, we studied the ternary polyvinylidene fluoride (PVDF)/La2TiO5/V2C dielectric composite system, which takes advantage of the synergistic effect between the high content (0 wt.% to 40 wt.%) of pseudo-perovskite filler La2TiO5 and the low content (2 wt.%) of highly conductive two-dimensional filler V2C. Comparisons with the binary PVDF/La2TiO5 composite system revealed that the ternary PVDF/La2TiO5/V2C composite dielectric system enabled balance and optimization of the comprehensive electrical properties of the composite material. Significantly elevated permittivity as well as depressed low-level dielectric loss were obtained in the ternary composites. The optimized ternary composite with 40 wt.% La2TiO5 and 2 wt.% V2C exhibited high dielectric constant of 47 and low dielectric loss of 0.17 at 1 kHz. This work might enable facile fabrication of promising composite dielectric materials based on this excellent synergetic filler strategy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, and Q. Zhang, InfoMat 1, 6 (2019). CrossRef Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, and Q. Zhang, InfoMat 1, 6 (2019). CrossRef
3.
go back to reference L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma, Prog. Mater. Sci. 55, 840 (2010). CrossRef L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma, Prog. Mater. Sci. 55, 840 (2010). CrossRef
4.
5.
go back to reference Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang, and Q. Wang, Annu. Rev. Mater. Res. 48, 219 (2018). CrossRef Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang, and Q. Wang, Annu. Rev. Mater. Res. 48, 219 (2018). CrossRef
7.
go back to reference Y. Wang, X. Zhou, Q. Chen, B. Chu, and Q. Zhang, IEEE Trans. Dielectr. Electr. Inst. 17, 1306 (2009). Y. Wang, X. Zhou, Q. Chen, B. Chu, and Q. Zhang, IEEE Trans. Dielectr. Electr. Inst. 17, 1306 (2009).
8.
10.
go back to reference T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad, Prog. Mater Sci. 83, 236 (2016). CrossRef T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad, Prog. Mater Sci. 83, 236 (2016). CrossRef
12.
go back to reference Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, and Q. Wang, Nature 523, 576 (2015). CrossRef Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, and Q. Wang, Nature 523, 576 (2015). CrossRef
13.
go back to reference X.Y. Zhao and H.J. Liu, Polym. Int. 59, 597 (2010). X.Y. Zhao and H.J. Liu, Polym. Int. 59, 597 (2010).
14.
go back to reference Y. Wang, M. Yao, R. Ma, Q.B. Yuan, D.S. Yang, B. Cui, C. Ma, M. Liu, and D.W. Hu, J. Mater. Chem. A 8, 884 (2020). CrossRef Y. Wang, M. Yao, R. Ma, Q.B. Yuan, D.S. Yang, B. Cui, C. Ma, M. Liu, and D.W. Hu, J. Mater. Chem. A 8, 884 (2020). CrossRef
15.
go back to reference H. Stoyanov, D.M. Carthy, M. Kollosche, and G. Kofod, Appl. Phys. Lett. 94, 232905 (2009). CrossRef H. Stoyanov, D.M. Carthy, M. Kollosche, and G. Kofod, Appl. Phys. Lett. 94, 232905 (2009). CrossRef
16.
go back to reference C.H. Park, M.H.T. Kaneko, and M. Akazaki, IEEE Trans. Dielectr. Electr. Inst. 17, 234 (1982). CrossRef C.H. Park, M.H.T. Kaneko, and M. Akazaki, IEEE Trans. Dielectr. Electr. Inst. 17, 234 (1982). CrossRef
17.
go back to reference S. Tu, Q. Jiang, J. Zhang, X. He, M.N. Hedhili, X.X. Zhang, and H.N. Alshareef, ACS Appl. Mater. Interfaces 11, 27358 (2019). CrossRef S. Tu, Q. Jiang, J. Zhang, X. He, M.N. Hedhili, X.X. Zhang, and H.N. Alshareef, ACS Appl. Mater. Interfaces 11, 27358 (2019). CrossRef
18.
go back to reference G. Armand, J. Lapujoulade, and J. Paigne, Appl. Phys. Ser. 14, 53 (1963). G. Armand, J. Lapujoulade, and J. Paigne, Appl. Phys. Ser. 14, 53 (1963).
19.
go back to reference C. Wu, X. Huang, X. Wu, J. Yu, L. Xie, and P. Jiang, Compos. Sci. Technol. 72, 521 (2012). CrossRef C. Wu, X. Huang, X. Wu, J. Yu, L. Xie, and P. Jiang, Compos. Sci. Technol. 72, 521 (2012). CrossRef
20.
go back to reference K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, and F. Xu, J. Mater. Chem. 22, 6449 (2012). CrossRef K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, and F. Xu, J. Mater. Chem. 22, 6449 (2012). CrossRef
21.
22.
go back to reference M.E. Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, and A. Qaiss, Appl. Surf. Sci. 258, 7668 (2012). CrossRef M.E. Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, and A. Qaiss, Appl. Surf. Sci. 258, 7668 (2012). CrossRef
23.
go back to reference D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, and T.T. Sun, J. Am. Ceram. Soc. 96, 184 (2013). CrossRef D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, and T.T. Sun, J. Am. Ceram. Soc. 96, 184 (2013). CrossRef
24.
go back to reference K. Kawashima, M. Hojamberdiev, H. Wagata, K. Yubuta, S. Oishi, and K. Teshima, Cryst. Growth Des. 15, 333 (2014). CrossRef K. Kawashima, M. Hojamberdiev, H. Wagata, K. Yubuta, S. Oishi, and K. Teshima, Cryst. Growth Des. 15, 333 (2014). CrossRef
25.
go back to reference Z. Chen, X. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma, and H.Q. Wang, J. Phys. Chem. Lett. 11, 885 (2020). CrossRef Z. Chen, X. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma, and H.Q. Wang, J. Phys. Chem. Lett. 11, 885 (2020). CrossRef
26.
27.
29.
go back to reference Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren, and Z. Zhu, ACS Appl. Mater. Interfaces 11, 44282 (2019). CrossRef Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren, and Z. Zhu, ACS Appl. Mater. Interfaces 11, 44282 (2019). CrossRef
30.
go back to reference G.S. Harbison, JACS Commun. 33, 124 (2001). G.S. Harbison, JACS Commun. 33, 124 (2001).
32.
go back to reference J. Hu, B. Xu, C. Ouyang, Y. Zhang, and S.A. Yang, RSC Adv. 6, 27467 (2016). CrossRef J. Hu, B. Xu, C. Ouyang, Y. Zhang, and S.A. Yang, RSC Adv. 6, 27467 (2016). CrossRef
33.
go back to reference B. Kumar, S.J. Rodrigues, and R.J. Spry, Electrochim. Acta 47, 1275 (2002). CrossRef B. Kumar, S.J. Rodrigues, and R.J. Spry, Electrochim. Acta 47, 1275 (2002). CrossRef
34.
35.
go back to reference D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, and S. Im, Appl. Phys. Lett. 92, 013304 (2008). CrossRef D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, and S. Im, Appl. Phys. Lett. 92, 013304 (2008). CrossRef
36.
37.
go back to reference Y. Feng, B. Miao, H. Gong, Y. Xie, X. Wei, and Z. Zhang, ACS Appl. Mater. Interfaces 8, 19054 (2016). CrossRef Y. Feng, B. Miao, H. Gong, Y. Xie, X. Wei, and Z. Zhang, ACS Appl. Mater. Interfaces 8, 19054 (2016). CrossRef
38.
go back to reference J.V. Seidel, O.A. Castaneda-Uribe, S. Arevalo, F. Munoz, W. Proud, and A. Avila, J. Hazard. Mater. 368, 228 (2019). CrossRef J.V. Seidel, O.A. Castaneda-Uribe, S. Arevalo, F. Munoz, W. Proud, and A. Avila, J. Hazard. Mater. 368, 228 (2019). CrossRef
39.
go back to reference B. Wu, K. Fu, N. Yantara, G.C. Xing, S.Y. Sun, T.C. Sum, and N. Mathews, Adv. Energy Mater. 5, 1500829 (2015). CrossRef B. Wu, K. Fu, N. Yantara, G.C. Xing, S.Y. Sun, T.C. Sum, and N. Mathews, Adv. Energy Mater. 5, 1500829 (2015). CrossRef
40.
go back to reference Y.R. Rhim, D. Zhang, D.H. Fairbrother, K.A. Wepasnick, K.J. Livi, R.J. Bodnar, and D.C. Nagle, Carbon 48, 1012 (2010). CrossRef Y.R. Rhim, D. Zhang, D.H. Fairbrother, K.A. Wepasnick, K.J. Livi, R.J. Bodnar, and D.C. Nagle, Carbon 48, 1012 (2010). CrossRef
41.
go back to reference Z. Xu, X. Lv, J. Chen, L. Jiang, Y. Lai, and J. Li, Phys. Chem. Chem. Phys. 19, 7807 (2017). CrossRef Z. Xu, X. Lv, J. Chen, L. Jiang, Y. Lai, and J. Li, Phys. Chem. Chem. Phys. 19, 7807 (2017). CrossRef
42.
go back to reference H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, and Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008). CrossRef H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, and Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008). CrossRef
43.
Metadata
Title
Remarkably Elevated Permittivity Achieved in PVDF/1D La2TiO5 Composite Film Materials with Low-Level Dielectric Loss by Adding 2D V2C MXene Phase
Authors
Yefeng Feng
Xiaomiao Zhao
Peiyao Chen
Maolin Bo
Qihuang Deng
Anning Zhao
Junjie Fu
Publication date
22-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08684-9

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue