Skip to main content
Top

2018 | OriginalPaper | Chapter

Remarks on a Fluid-Structure Interaction Scheme Based on the Least-Squares Finite Element Method at Small Strains

Authors : Carina Nisters, Alexander Schwarz, Solveigh Averweg, Jörg Schröder

Published in: Advances in Mechanics of Materials and Structural Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present contribution introduces a least-squares finite element method (LSFEM) based fluid-structure interaction (FSI) approach. The proposed method is based on the formulation of mixed finite elements in terms of stresses and velocities for both the fluid and the solid regime. The LSFEM offers the advantage of a flexibility to construct functionals with sophisticated physical quantities as e.g. stresses, velocities and displacements. The approximation of the stresses and velocities in suitable spaces, namely in the spaces \(H(\text {div})\) and \(H^1\), respectively, leads to the inherent fulfillment of the coupling conditions of a FSI method. A numerical example considering an incompressible, linear elastic material behavior at small deformations and the incompressible Navier–Stokes equations demonstrates the applicability of the LSFEM-FSI method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ali, A., Reimann, T., Sternel, D.C., Schäfer, M.: Comparison of advanced turbulence modeling approaches for fluid-structure interaction. In: Coupled Problems in Science and Engineering VI, CIMNE (2015) Ali, A., Reimann, T., Sternel, D.C., Schäfer, M.: Comparison of advanced turbulence modeling approaches for fluid-structure interaction. In: Coupled Problems in Science and Engineering VI, CIMNE (2015)
2.
go back to reference Balzani, D., Deparis, S., Fausten, S., Forti, D., Heinlein, A., Klawonn, A., Quarteroni, A., Rheinbach, Q., Schröder, J.: Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains. Int. J. Numer. Method Biomed. Eng. (2015) Balzani, D., Deparis, S., Fausten, S., Forti, D., Heinlein, A., Klawonn, A., Quarteroni, A., Rheinbach, Q., Schröder, J.: Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains. Int. J. Numer. Method Biomed. Eng. (2015)
3.
go back to reference Bazilevs, Y., Hsu, M., Kiendl, J., Wüchner, R., Bletzinger, K.: 3D Simulation of wind turbine rotors at full scale. Part II: Fluid - structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65, 236–253 (2011) Bazilevs, Y., Hsu, M., Kiendl, J., Wüchner, R., Bletzinger, K.: 3D Simulation of wind turbine rotors at full scale. Part II: Fluid - structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65, 236–253 (2011)
4.
go back to reference Bochev, P.B., Gunzburger, M.D.: Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Methods Appl. Mech. Eng. 126(3–4), 267–287 (1995)MathSciNetCrossRefMATH Bochev, P.B., Gunzburger, M.D.: Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations. Comput. Methods Appl. Mech. Eng. 126(3–4), 267–287 (1995)MathSciNetCrossRefMATH
5.
go back to reference Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods, 1st edn. Springer, New York (2009)MATH Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods, 1st edn. Springer, New York (2009)MATH
6.
go back to reference Bodnár, T., Galdi, G., Nečasová, S.: Fluid-Structure Interaction and Biomedical Applications. Springer, Berlin (2014)CrossRefMATH Bodnár, T., Galdi, G., Nečasová, S.: Fluid-Structure Interaction and Biomedical Applications. Springer, Berlin (2014)CrossRefMATH
7.
go back to reference Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)CrossRefMATH Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)CrossRefMATH
9.
go back to reference Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRefMATH Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRefMATH
10.
go back to reference Bungartz, H.-J., Mehl, M., Schäfer, M.: Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer, Berlin (2010)CrossRefMATH Bungartz, H.-J., Mehl, M., Schäfer, M.: Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer, Berlin (2010)CrossRefMATH
11.
go back to reference Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004)MathSciNetCrossRefMATH Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004)MathSciNetCrossRefMATH
12.
go back to reference Cori, J.-F., Etienne, S., Garon, A., Pelletier, D.: High-order implicit Runge–Kutta time integrators for fluid-structure interactions. Int. J. Numer. Methods Fluids 78, 385–412 (2015)MathSciNetCrossRef Cori, J.-F., Etienne, S., Garon, A., Pelletier, D.: High-order implicit Runge–Kutta time integrators for fluid-structure interactions. Int. J. Numer. Methods Fluids 78, 385–412 (2015)MathSciNetCrossRef
13.
go back to reference Deang, J.M., Gunzburger, M.D.: Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20(3), 878–906 (1998)MathSciNetCrossRefMATH Deang, J.M., Gunzburger, M.D.: Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20(3), 878–906 (1998)MathSciNetCrossRefMATH
14.
go back to reference Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)CrossRef Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)CrossRef
15.
go back to reference Förster, Ch., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)MathSciNetCrossRefMATH Förster, Ch., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)MathSciNetCrossRefMATH
16.
go back to reference Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E.: Computation of fluid-structure interaction on lightweight structures. J. Wind Eng. Ind. Aerodyn. 89(14), 1351–1368 (2001)CrossRef Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E.: Computation of fluid-structure interaction on lightweight structures. J. Wind Eng. Ind. Aerodyn. 89(14), 1351–1368 (2001)CrossRef
17.
go back to reference Hron, J., Turek, S.: A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD (2006) Hron, J., Turek, S.: A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD (2006)
18.
go back to reference Hughes, T.J.R., Brooks, A.N.: Multi-dimensional upwind scheme with no crosswind diffusion. ASME, Appl. Mech. Div. 34, 19–35 (1979)MATH Hughes, T.J.R., Brooks, A.N.: Multi-dimensional upwind scheme with no crosswind diffusion. ASME, Appl. Mech. Div. 34, 19–35 (1979)MATH
19.
go back to reference Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MathSciNetCrossRefMATH Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MathSciNetCrossRefMATH
20.
go back to reference Jiang, B.-N.: The Least-Squares Finite Element Method, Scientific Computation. Springer, Berlin (1998)CrossRef Jiang, B.-N.: The Least-Squares Finite Element Method, Scientific Computation. Springer, Berlin (1998)CrossRef
21.
go back to reference Kayser-Herold, O., Matthies, H.G.: A unified least-squares formulation for fluid-structure interaction problems. Comput. Struct. 85, 998–1011 (2007)MathSciNetCrossRef Kayser-Herold, O., Matthies, H.G.: A unified least-squares formulation for fluid-structure interaction problems. Comput. Struct. 85, 998–1011 (2007)MathSciNetCrossRef
22.
go back to reference Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187(1), 231–248 (1997)CrossRefMATH Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187(1), 231–248 (1997)CrossRefMATH
23.
go back to reference Korelc, J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18(4), 312–327 (2002)CrossRef Korelc, J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18(4), 312–327 (2002)CrossRef
24.
go back to reference Küttler, U., Gee, M., Förster, Ch., Comerford, A., Wall, W.A.: Coupling strategies for biomedical fluid - structure interaction problems. Int. J. Numer. Methods Biomed. Eng. 26, 305–321 (2010)MathSciNetCrossRefMATH Küttler, U., Gee, M., Förster, Ch., Comerford, A., Wall, W.A.: Coupling strategies for biomedical fluid - structure interaction problems. Int. J. Numer. Methods Biomed. Eng. 26, 305–321 (2010)MathSciNetCrossRefMATH
25.
go back to reference Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)CrossRefMATH Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)CrossRefMATH
26.
go back to reference Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes–Darcy flow. SIAM J. Numer. Anal. 49(1), 387–404 (2011)MathSciNetCrossRefMATH Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes–Darcy flow. SIAM J. Numer. Anal. 49(1), 387–404 (2011)MathSciNetCrossRefMATH
27.
go back to reference Nisters, C., Schwarz, A.: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. (2017, in revision) Nisters, C., Schwarz, A.: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. (2017, in revision)
28.
go back to reference Ozcelikkale, A., Sert, C.: Least-squares spectral element solution of incompressible Navier–Stokes equations with adaptive refinement. J. Comput. Phys. 231(9), 3755–3769 (2012)MathSciNetCrossRefMATH Ozcelikkale, A., Sert, C.: Least-squares spectral element solution of incompressible Navier–Stokes equations with adaptive refinement. J. Comput. Phys. 231(9), 3755–3769 (2012)MathSciNetCrossRefMATH
29.
go back to reference Pian, T.H.H., Sumihara, K.: A rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984)CrossRefMATH Pian, T.H.H., Sumihara, K.: A rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984)CrossRefMATH
30.
go back to reference Prabhakar, V., Pontaza, J.P., Reddy, J.N.: A collocation penalty least-squares finite element formulation for incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 449–463 (2008)MathSciNetCrossRefMATH Prabhakar, V., Pontaza, J.P., Reddy, J.N.: A collocation penalty least-squares finite element formulation for incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 449–463 (2008)MathSciNetCrossRefMATH
31.
go back to reference Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin (1977)CrossRef Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin (1977)CrossRef
32.
go back to reference Reddy, J.N.: Penalty-finite-element analysis of 3-D Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 35, 87–97 (1982)CrossRefMATH Reddy, J.N.: Penalty-finite-element analysis of 3-D Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 35, 87–97 (1982)CrossRefMATH
33.
go back to reference Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 3rd edn. CRC Press, Boca Raton (2010)MATH Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 3rd edn. CRC Press, Boca Raton (2010)MATH
34.
go back to reference Schröder, J., Schwarz, A., Steeger, K.: Least-squares finite element formulations for isotropic and anisotropic elasticity at small and large strains. Advanced Finite Element Technologies. CISM Courses and Lectures, pp. 131–175. Springer, Berlin (2016)CrossRef Schröder, J., Schwarz, A., Steeger, K.: Least-squares finite element formulations for isotropic and anisotropic elasticity at small and large strains. Advanced Finite Element Technologies. CISM Courses and Lectures, pp. 131–175. Springer, Berlin (2016)CrossRef
35.
go back to reference Schröder, W.: Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 109. Springer, Berlin (2010)CrossRef Schröder, W.: Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 109. Springer, Berlin (2010)CrossRef
36.
go back to reference Schwarz, A., Nickaeen, M., Serdas, S., Nisters, C., Ouazzi, A., Schröder, J., Turek, S.: A comparative study of mixed least-squares FEMs for the incompressible Navier–Stokes equations. Int. J. Comput. Sci. Eng. (2016) Schwarz, A., Nickaeen, M., Serdas, S., Nisters, C., Ouazzi, A., Schröder, J., Turek, S.: A comparative study of mixed least-squares FEMs for the incompressible Navier–Stokes equations. Int. J. Comput. Sci. Eng. (2016)
37.
go back to reference Schwarz, A., Schröder, J., Serdas, S., Turek, S., Ouazzi, A., Nickaeen, M.: Performance aspects of a mixed s-v LSFEM for the incompressible Navier–Stokes equations with improved mass conservation. Proc. Appl. Math. Mech. 13, 97–98 (2013)CrossRef Schwarz, A., Schröder, J., Serdas, S., Turek, S., Ouazzi, A., Nickaeen, M.: Performance aspects of a mixed s-v LSFEM for the incompressible Navier–Stokes equations with improved mass conservation. Proc. Appl. Math. Mech. 13, 97–98 (2013)CrossRef
38.
go back to reference Schwarz, A., Steeger, K., Schröder, J.: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity. Comput. Mech. 54(3), 603–612 (2014)MathSciNetCrossRefMATH Schwarz, A., Steeger, K., Schröder, J.: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity. Comput. Mech. 54(3), 603–612 (2014)MathSciNetCrossRefMATH
39.
go back to reference Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)MathSciNetCrossRefMATH Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)MathSciNetCrossRefMATH
40.
41.
go back to reference Tian, F.-B., Dai, H., Luo, H., Doyle, J.F., Rousseau, B.: Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469 (2014)MathSciNetCrossRefMATH Tian, F.-B., Dai, H., Luo, H., Doyle, J.F., Rousseau, B.: Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469 (2014)MathSciNetCrossRefMATH
42.
go back to reference Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical benchmarking of fluid-structure interaction: a comparison of different discretization and solution approaches (2010) Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical benchmarking of fluid-structure interaction: a comparison of different discretization and solution approaches (2010)
43.
go back to reference van Zuijlen, A.H., Bijl, H.: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction. Nonlinear Anal. Theory Methods Appl. 63(5–7), e1597–e1605 (2005)CrossRefMATH van Zuijlen, A.H., Bijl, H.: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction. Nonlinear Anal. Theory Methods Appl. 63(5–7), e1597–e1605 (2005)CrossRefMATH
44.
go back to reference Wall, W.A., Genkinger, S., Ramm, E.: A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput. Fluids 36(1), 169–183 (2007)CrossRefMATH Wall, W.A., Genkinger, S., Ramm, E.: A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput. Fluids 36(1), 169–183 (2007)CrossRefMATH
45.
go back to reference Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement models. Numer. Comput. Methods Struct. Mech. 43 (1973) Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement models. Numer. Comput. Methods Struct. Mech. 43 (1973)
46.
go back to reference Wolfram Research Inc. Mathematica. Campaign: Wolfram Research, Inc. Version 10.1 edition (2015) Wolfram Research Inc. Mathematica. Campaign: Wolfram Research, Inc. Version 10.1 edition (2015)
47.
go back to reference Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: Fluid-structure interaction. The Finite Element Method for Fluid Dynamics, vol. 3, pp. 423–449 (2014) Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: Fluid-structure interaction. The Finite Element Method for Fluid Dynamics, vol. 3, pp. 423–449 (2014)
Metadata
Title
Remarks on a Fluid-Structure Interaction Scheme Based on the Least-Squares Finite Element Method at Small Strains
Authors
Carina Nisters
Alexander Schwarz
Solveigh Averweg
Jörg Schröder
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-70563-7_12

Premium Partners