Skip to main content
Top

2021 | OriginalPaper | Chapter

Remembering Both the Machine and the Crowd When Sampling Points: Active Learning for Semantic Segmentation of ALS Point Clouds

Authors : Michael Kölle, Volker Walter, Stefan Schmohl, Uwe Soergel

Published in: Pattern Recognition. ICPR International Workshops and Challenges

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Supervised Machine Learning systems such as Convolutional Neural Networks (CNNs) are known for their great need for labeled data. However, in case of geospatial data and especially in terms of Airborne Laserscanning (ALS) point clouds, labeled data is rather scarce, hindering the application of such systems. Therefore, we rely on Active Learning (AL) for significantly reducing necessary labels and we aim at gaining a deeper understanding on its working principle for ALS point clouds. Since the key element of AL is sampling of most informative points, we compare different basic sampling strategies and try to further improve them for geospatial data. While AL reduces total labeling effort, the basic issue of experts doing this labor- and therefore cost-intensive task remains. Therefore, we propose to outsource data annotation to the crowd. However, when employing crowdworkers, labeling errors are inevitable. As a remedy, we aim on selecting points, which are easier for interpretation and evaluate the robustness of AL to labeling errors. Applying these strategies for different classifiers, we estimate realistic segmentation results from crowdsourced data solely, only differing in Overall Accuracy by about 3% points compared to results based on completely labeled dataset, which is demonstrated for two different scenes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Dataset will be made publicly available in early 2021.
 
Literature
1.
go back to reference Argamon-Engelson, S., Dagan, I.: Committee-based sample selection for probabilistic classifiers. J. Artif. Intell. Res. 11, 335–360 (1999)CrossRef Argamon-Engelson, S., Dagan, I.: Committee-based sample selection for probabilistic classifiers. J. Artif. Intell. Res. 11, 335–360 (1999)CrossRef
2.
go back to reference Becker, C., Häni, N., Rosinskaya, E., d’Angelo, E., Strecha, C.: Classification of aerial photogrammetric 3D point clouds. ISPRS Annals IV-1/W1, pp. 3–10 (2017) Becker, C., Häni, N., Rosinskaya, E., d’Angelo, E., Strecha, C.: Classification of aerial photogrammetric 3D point clouds. ISPRS Annals IV-1/W1, pp. 3–10 (2017)
5.
go back to reference Chehata, N., Guo, L., Mallet, C.: Airborne LiDAR feature selection for urban classification using random forests. ISPRS Arch. 38 (2009) Chehata, N., Guo, L., Mallet, C.: Airborne LiDAR feature selection for urban classification using random forests. ISPRS Arch. 38 (2009)
7.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255 (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255 (2009)
8.
go back to reference Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: active learning in imbalanced data classification. In: CIKM 2007, pp. 127–136. ACM, New York (2007) Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: active learning in imbalanced data classification. In: CIKM 2007, pp. 127–136. ACM, New York (2007)
9.
go back to reference Gadiraju, U., Kawase, R., Siehndel, P., Fetahu, B.: Breaking bad: understanding behavior of crowd workers in categorization microtasks. In: HT 2015, pp. 33–38. ACM (2015) Gadiraju, U., Kawase, R., Siehndel, P., Fetahu, B.: Breaking bad: understanding behavior of crowd workers in categorization microtasks. In: HT 2015, pp. 33–38. ACM (2015)
10.
go back to reference Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML 2016, vol. 48, pp. 1050–1059. PMLR, New York (2016) Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML 2016, vol. 48, pp. 1050–1059. PMLR, New York (2016)
11.
go back to reference Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR 2018, pp. 9224–9232 (2018) Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR 2018, pp. 9224–9232 (2018)
12.
go back to reference Haala, N., Kölle, M., Cramer, M., Laupheimer, D., Mandlburger, G., Glira, P.: hybrid georeferencing, enhancement and classification of ultra-high resolution UAV LiDAR and image point clouds for monitoring applications. ISPRS Annals V-2-2020, pp. 727–734 (2020) Haala, N., Kölle, M., Cramer, M., Laupheimer, D., Mandlburger, G., Glira, P.: hybrid georeferencing, enhancement and classification of ultra-high resolution UAV LiDAR and image point clouds for monitoring applications. ISPRS Annals V-2-2020, pp. 727–734 (2020)
13.
go back to reference Hirth, M., Hoßfeld, T., Tran-Gia, P.: Anatomy of a crowdsourcing platform - using the example of Microworkers.com. In: IMIS 2011, pp. 322–329. IEEE Computer Society, Washington (2011) Hirth, M., Hoßfeld, T., Tran-Gia, P.: Anatomy of a crowdsourcing platform - using the example of Microworkers.com. In: IMIS 2011, pp. 322–329. IEEE Computer Society, Washington (2011)
14.
go back to reference Hui, Z., et al.: An active learning method for DEM extraction from airborne LiDAR point clouds. IEEE Access 7, 89366–89378 (2019)CrossRef Hui, Z., et al.: An active learning method for DEM extraction from airborne LiDAR point clouds. IEEE Access 7, 89366–89378 (2019)CrossRef
15.
go back to reference Kellenberger, B., Marcos, D., Lobry, S., Tuia, D.: Half a percent of labels is enough: efficient animal detection in UAV imagery using deep CNNs and active learning. TRGS 57(12), 9524–9533 (2019) Kellenberger, B., Marcos, D., Lobry, S., Tuia, D.: Half a percent of labels is enough: efficient animal detection in UAV imagery using deep CNNs and active learning. TRGS 57(12), 9524–9533 (2019)
16.
go back to reference Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning. In: NIPS 2019, pp. 7026–7037. Curran Associates, Inc. (2019) Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning. In: NIPS 2019, pp. 7026–7037. Curran Associates, Inc. (2019)
17.
go back to reference Kölle, M., Walter, V., Schmohl, S., Soergel, U.: Hybrid acquisition of high quality training data for semantic segmentation of 3D point clouds using crowd-based active learning. ISPRS Annals V-2-2020, pp. 501–508 (2020) Kölle, M., Walter, V., Schmohl, S., Soergel, U.: Hybrid acquisition of high quality training data for semantic segmentation of 3D point clouds using crowd-based active learning. ISPRS Annals V-2-2020, pp. 501–508 (2020)
18.
go back to reference Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report TR-2009, University of Toronto, Toronto (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report TR-2009, University of Toronto, Toronto (2009)
19.
go back to reference Li, N., Pfeifer, N.: Active learning to extend training data for large area airborne LiDAR classification. ISPRS Archives XLII-2/W13, pp. 1033–1037 (2019) Li, N., Pfeifer, N.: Active learning to extend training data for large area airborne LiDAR classification. ISPRS Archives XLII-2/W13, pp. 1033–1037 (2019)
20.
go back to reference Lin, Y., Vosselman, G., Cao, Y., Yang, M.Y.: Efficient training of semantic point cloud segmentation via active learning. ISPRS Annals V-2-2020, pp. 243–250 (2020) Lin, Y., Vosselman, G., Cao, Y., Yang, M.Y.: Efficient training of semantic point cloud segmentation via active learning. ISPRS Annals V-2-2020, pp. 243–250 (2020)
22.
go back to reference Lockhart, J., Assefa, S., Balch, T., Veloso, M.: Some people aren’t worth listening to: periodically retraining classifiers with feedback from a team of end users. CoRR abs/2004.13152 (2020) Lockhart, J., Assefa, S., Balch, T., Veloso, M.: Some people aren’t worth listening to: periodically retraining classifiers with feedback from a team of end users. CoRR abs/2004.13152 (2020)
23.
go back to reference Luo, H., et al.: Semantic labeling of mobile lidar point clouds via active learning and higher order MRF. TGRS 56(7), 3631–3644 (2018) Luo, H., et al.: Semantic labeling of mobile lidar point clouds via active learning and higher order MRF. TGRS 56(7), 3631–3644 (2018)
24.
go back to reference Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: CEREALS - cost-effective region-based active learning for semantic segmentation. In: BMVC 2018 (2018) Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: CEREALS - cost-effective region-based active learning for semantic segmentation. In: BMVC 2018 (2018)
25.
go back to reference Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of lidar data and building object detection in urban areas. ISPRS J. 87, 152–165 (2014) Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of lidar data and building object detection in urban areas. ISPRS J. 87, 152–165 (2014)
26.
go back to reference Patra, S., Bruzzone, L.: A cluster-assumption based batch mode active learning technique. Pattern Recogn. Lett. 33(9), 1042–1048 (2012)CrossRef Patra, S., Bruzzone, L.: A cluster-assumption based batch mode active learning technique. Pattern Recogn. Lett. 33(9), 1042–1048 (2012)CrossRef
27.
go back to reference Schmohl, S., Sörgel, U.: Submanifold sparse convolutional networks for semantic segmentation of large-scale ALS point clouds. ISPRS Annals IV-2/W5, pp. 77–84 (2019) Schmohl, S., Sörgel, U.: Submanifold sparse convolutional networks for semantic segmentation of large-scale ALS point clouds. ISPRS Annals IV-2/W5, pp. 77–84 (2019)
28.
go back to reference Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009) Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009)
29.
go back to reference Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.: Active learning methods for remote sensing image classification. TGRS 47(7), 2218–2232 (2009) Tuia, D., Ratle, F., Pacifici, F., Kanevski, M.F., Emery, W.J.: Active learning methods for remote sensing image classification. TGRS 47(7), 2218–2232 (2009)
30.
go back to reference Vaughan, J.W.: Making better use of the crowd: how crowdsourcing can advance machine learning research. J. Mach. Learn. Res. 18(193), 1–46 (2018)MathSciNetMATH Vaughan, J.W.: Making better use of the crowd: how crowdsourcing can advance machine learning research. J. Mach. Learn. Res. 18(193), 1–46 (2018)MathSciNetMATH
31.
go back to reference Walter, V., Kölle, M., Yin, Y.: Evaluation and optimisation of crowd-based collection of trees from 3D point clouds. ISPRS Annals V-4-2020, pp. 49–56 (2020) Walter, V., Kölle, M., Yin, Y.: Evaluation and optimisation of crowd-based collection of trees from 3D point clouds. ISPRS Annals V-4-2020, pp. 49–56 (2020)
33.
go back to reference Weinmann, M., Jutzi, B., Hinz, S., Mallet, C.: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. 105, 286–304 (2015) Weinmann, M., Jutzi, B., Hinz, S., Mallet, C.: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. 105, 286–304 (2015)
35.
go back to reference Zhdanov, F.: Diverse mini-batch active learning. CoRR abs/1901.05954 (2019) Zhdanov, F.: Diverse mini-batch active learning. CoRR abs/1901.05954 (2019)
Metadata
Title
Remembering Both the Machine and the Crowd When Sampling Points: Active Learning for Semantic Segmentation of ALS Point Clouds
Authors
Michael Kölle
Volker Walter
Stefan Schmohl
Uwe Soergel
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68787-8_37

Premium Partner