Skip to main content
Top
Published in: Neural Computing and Applications 8/2021

30-07-2020 | Original Article

RemNet: remnant convolutional neural network for camera model identification

Authors: Abdul Muntakim Rafi, Thamidul Islam Tonmoy, Uday Kamal, Q. M. Jonathan Wu, Md. Kamrul Hasan

Published in: Neural Computing and Applications | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Camera model identification (CMI) has gained significant importance in image forensics as digitally altered images are becoming increasingly commonplace. In this paper, a novel convolutional neural network (CNN) architecture is proposed for CMI with emphasis given on the preprocessing task considered to be inevitable for removing the scene content that heavily obscures the camera model fingerprints. Unlike the conventional approaches where fixed filters are used for preprocessing, the proposed remnant blocks, when coupled with a classification block and trained end-to-end minimizing the classification loss, learn to suppress the unnecessary image contents dynamically. This helps the classification block extract more robust camera model-specific features for CMI from the remnant of the image. The whole network, called RemNet, consisting of a preprocessing block and a shallow classification block, when trained on 18 models from the Dresden database, shows 100% accuracy for 16 camera models with an overall accuracy of 97.59% on test images from unseen devices, outperforming the state-of-the-art deep CNNs used in CMI. Furthermore, the proposed remnant blocks, when cascaded with the existing deep CNNs, e.g., ResNet, DenseNet, boost their performances by a large margin. The proposed approach proves to be very robust in identifying the source camera models, even if the original images are post-processed. It also achieves an overall accuracy of 95.11% on the IEEE Signal Processing Cup 2018 dataset, which indicates its generalizability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stamm MC, Wu M, Liu KR (2013) Information forensics: an overview of the first decade. IEEE Access 1:167–200CrossRef Stamm MC, Wu M, Liu KR (2013) Information forensics: an overview of the first decade. IEEE Access 1:167–200CrossRef
2.
go back to reference San K, Choi E, Lam Y, Wong KK (2006) Source camera identification by jpeg compression statistics for image forensics. In: TENCON IEEE region. IEEE, pp 1–4 San K, Choi E, Lam Y, Wong KK (2006) Source camera identification by jpeg compression statistics for image forensics. In: TENCON IEEE region. IEEE, pp 1–4
3.
go back to reference Castiglione A, Cattaneo G, Cembalo M, Petrillo UF (2013) Experimentations with source camera identification and online social networks. J Amb Intell Hum Comput 4(2):265–274CrossRef Castiglione A, Cattaneo G, Cembalo M, Petrillo UF (2013) Experimentations with source camera identification and online social networks. J Amb Intell Hum Comput 4(2):265–274CrossRef
4.
go back to reference Kirchner M, Gloe T (2015) Forensic camera model identification. In: Proceedings of WOL handbook of digital forensics of multimedia data and devices, pp 329–374 Kirchner M, Gloe T (2015) Forensic camera model identification. In: Proceedings of WOL handbook of digital forensics of multimedia data and devices, pp 329–374
6.
go back to reference Farid H (2009) Image forgery detection. IEEE Signal Process Mag 26(2):16–25CrossRef Farid H (2009) Image forgery detection. IEEE Signal Process Mag 26(2):16–25CrossRef
7.
go back to reference Bayram S, Sencar H, Memon N, Avcibas I (2005) Source camera identification based on CFA interpolation. In: Proceedings of 1st international conference on image processing, (ICIP), vol 3. IEEE, pp III–69 Bayram S, Sencar H, Memon N, Avcibas I (2005) Source camera identification based on CFA interpolation. In: Proceedings of 1st international conference on image processing, (ICIP), vol 3. IEEE, pp III–69
8.
go back to reference Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification, In: Proceedings of IEEE international conference on image processing, (ICIP), vol 1. IEEE, pp 709–712 Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification, In: Proceedings of IEEE international conference on image processing, (ICIP), vol 1. IEEE, pp 709–712
9.
go back to reference Gloe T (2012) Feature-based forensic camera model identification, In: LNCS transactions Data Hiding and Multimedia Security VIII, vol 7228 of lecturer notes in computer science. Springer, pp 42–62 Gloe T (2012) Feature-based forensic camera model identification, In: LNCS transactions Data Hiding and Multimedia Security VIII, vol 7228 of lecturer notes in computer science. Springer, pp 42–62
10.
go back to reference Dirik AE, Sencar HT, Memon N (2007) Source camera identification based on sensor dust characteristics. In: Proceedings of IEEE workshop on signal processing applications for public security and forensics. IEEE, pp 1–6 Dirik AE, Sencar HT, Memon N (2007) Source camera identification based on sensor dust characteristics. In: Proceedings of IEEE workshop on signal processing applications for public security and forensics. IEEE, pp 1–6
11.
go back to reference Fridrich J, Lukas J, Goljan M (2006) Digital camera identification from sensor noise. IEEE Trans Inf Forensics Secur 1(2):205–214CrossRef Fridrich J, Lukas J, Goljan M (2006) Digital camera identification from sensor noise. IEEE Trans Inf Forensics Secur 1(2):205–214CrossRef
12.
go back to reference Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proceedings of IEEE international conference on image processing, (ICIP). IEEE, pp 1296–1299 Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proceedings of IEEE international conference on image processing, (ICIP). IEEE, pp 1296–1299
13.
go back to reference Thai TH, Cogranne R, Retraint F (2014) Camera model identification based on the heteroscedastic noise model. IEEE Trans Image Process 23(1):250–263MathSciNetCrossRef Thai TH, Cogranne R, Retraint F (2014) Camera model identification based on the heteroscedastic noise model. IEEE Trans Image Process 23(1):250–263MathSciNetCrossRef
14.
go back to reference Lukas J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inf Forensics Secur 1(2):205–214CrossRef Lukas J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inf Forensics Secur 1(2):205–214CrossRef
15.
go back to reference Cao H, Kot AC (2009) Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans Inf Forensics Secur 4(4):899–910CrossRef Cao H, Kot AC (2009) Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans Inf Forensics Secur 4(4):899–910CrossRef
16.
go back to reference Swaminathan A, Wu M, Liu KR (2007) Nonintrusive component forensics of visual sensors using output images. IEEE Trans Inf Forensics Secur 2(1):91–106CrossRef Swaminathan A, Wu M, Liu KR (2007) Nonintrusive component forensics of visual sensors using output images. IEEE Trans Inf Forensics Secur 2(1):91–106CrossRef
17.
go back to reference Chen C, Stamm MC (2015) Camera model identification framework using an ensemble of demosaicing features. In: Proceedings of IEEE international workshop on information forensics and security (WIFS). IEEE, pp 1–6 Chen C, Stamm MC (2015) Camera model identification framework using an ensemble of demosaicing features. In: Proceedings of IEEE international workshop on information forensics and security (WIFS). IEEE, pp 1–6
18.
go back to reference Marra F, Poggi G, Sansone C, Verdoliva L (2017) A study of co-occurrence based local features for camera model identification. Multimedia Tools Appl 76(4):4765–4781CrossRef Marra F, Poggi G, Sansone C, Verdoliva L (2017) A study of co-occurrence based local features for camera model identification. Multimedia Tools Appl 76(4):4765–4781CrossRef
19.
go back to reference Chen J, Kang X, Liu Y, Wang ZJ (2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett 22(11):1849–1853CrossRef Chen J, Kang X, Liu Y, Wang ZJ (2015) Median filtering forensics based on convolutional neural networks. IEEE Signal Process Lett 22(11):1849–1853CrossRef
20.
go back to reference Tuama A, Comby F, Chaumont M (2016) Camera model identification with the use of deep convolutional neural networks. In: Proceedings of IEEE international workshop on information forensics and security (WIFS). IEEE, pp 1–6 Tuama A, Comby F, Chaumont M (2016) Camera model identification with the use of deep convolutional neural networks. In: Proceedings of IEEE international workshop on information forensics and security (WIFS). IEEE, pp 1–6
21.
go back to reference Bayar B, Stamm MC (2017) Design principles of convolutional neural networks for multimedia forensics. Electron Imaging 2017(7):77–86CrossRef Bayar B, Stamm MC (2017) Design principles of convolutional neural networks for multimedia forensics. Electron Imaging 2017(7):77–86CrossRef
22.
go back to reference Bayar B, Stamm MC (2016) A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of 4th-ACM workshop on information hiding and multimedia security. ACM, pp 5–10 Bayar B, Stamm MC (2016) A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of 4th-ACM workshop on information hiding and multimedia security. ACM, pp 5–10
23.
go back to reference Yang P, Zhao W, Ni R, Zhao Y (2019) Source camera identification based on content-adaptive fusion network. Pattern Recog Lett 119:195–204CrossRef Yang P, Zhao W, Ni R, Zhao Y (2019) Source camera identification based on content-adaptive fusion network. Pattern Recog Lett 119:195–204CrossRef
24.
go back to reference Bondi L, Baroffio L, Güera D, Bestagini P, Delp EJ, Tubaro S (2017) First steps toward camera model identification with convolutional neural networks. IEEE Signal Process Lett 24(3):259–263CrossRef Bondi L, Baroffio L, Güera D, Bestagini P, Delp EJ, Tubaro S (2017) First steps toward camera model identification with convolutional neural networks. IEEE Signal Process Lett 24(3):259–263CrossRef
25.
go back to reference Yao H, Qiao T, Xu M, Zheng N (2018) Robust multi-classifier for camera model identification based on convolution neural network. IEEE Access 6:24973–24982CrossRef Yao H, Qiao T, Xu M, Zheng N (2018) Robust multi-classifier for camera model identification based on convolution neural network. IEEE Access 6:24973–24982CrossRef
26.
go back to reference Rafi AM, Kamal U, Hoque R, Abrar A, Das S, Laganière R, Hasan MK (2019) Application of densenet in Camera model identification and post-processing detection. In: CVPR workshops, pp 19–28 Rafi AM, Kamal U, Hoque R, Abrar A, Das S, Laganière R, Hasan MK (2019) Application of densenet in Camera model identification and post-processing detection. In: CVPR workshops, pp 19–28
27.
go back to reference Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, no 2, p 3 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, no 2, p 3
28.
go back to reference Li B, Shi YQ, Huang J (2008) Detecting doubly compressed jpeg images by using mode based first digit features. In: Proceedings of IEEE 10th workshop on multimedia signal process. IEEE, pp 730–735 Li B, Shi YQ, Huang J (2008) Detecting doubly compressed jpeg images by using mode based first digit features. In: Proceedings of IEEE 10th workshop on multimedia signal process. IEEE, pp 730–735
29.
go back to reference Stamm MC, Liu KR (2010) Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans Inf Forensics Secur 5(3):492–506CrossRef Stamm MC, Liu KR (2010) Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans Inf Forensics Secur 5(3):492–506CrossRef
30.
go back to reference Kee E, Johnson MK, Farid H (2011) Digital image authentication from jpeg headers. IEEE Trans Inf Forensics Secur 6(3):1066–1075CrossRef Kee E, Johnson MK, Farid H (2011) Digital image authentication from jpeg headers. IEEE Trans Inf Forensics Secur 6(3):1066–1075CrossRef
32.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of IEEE conference on computer vision pattern recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of IEEE conference on computer vision pattern recognition (CVPR), pp 770–778
33.
go back to reference Greff K, Srivastava RK, Schmidhuber J (2016) Highway and residual networks learn unrolled iterative estimation. arXiv preprint arXiv:1612.07771 Greff K, Srivastava RK, Schmidhuber J (2016) Highway and residual networks learn unrolled iterative estimation. arXiv preprint arXiv:​1612.​07771
34.
go back to reference Lawgaly A, Khelifi F (2017) Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification. IEEE Trans Inf Forensics Secur 12:392–404CrossRef Lawgaly A, Khelifi F (2017) Sensor pattern noise estimation based on improved locally adaptive DCT filtering and weighted averaging for source camera identification and verification. IEEE Trans Inf Forensics Secur 12:392–404CrossRef
35.
go back to reference Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv preprint arXiv:​1412.​6806
36.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
37.
38.
go back to reference Gloe T, Böhme R (2010) The Dresden image database for benchmarking digital image forensics. J Digit Forensic Pract 3:150–159CrossRef Gloe T, Böhme R (2010) The Dresden image database for benchmarking digital image forensics. J Digit Forensic Pract 3:150–159CrossRef
39.
go back to reference Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of AISTATS, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of AISTATS, pp 249–256
41.
go back to reference Chen Y, Kang X, Wang ZJ, Zhang Q (2018) Densely connected convolutional neural network for multi-purpose image forensics under anti-forensic attacks. In: Proceedings of the 6th ACM workshop on information hiding and multimedia security. ACM, New York, NY, USA, pp 91–96 Chen Y, Kang X, Wang ZJ, Zhang Q (2018) Densely connected convolutional neural network for multi-purpose image forensics under anti-forensic attacks. In: Proceedings of the 6th ACM workshop on information hiding and multimedia security. ACM, New York, NY, USA, pp 91–96
42.
go back to reference Barni M, Costanzo A, Nowroozi E, Tondi B (2018) CNN-based detection of generic contrast adjustment with jpeg post-processing, In: Proceedings of IEEE international conference on image processing (ICIP), Oct 2018, pp 3803–3807 Barni M, Costanzo A, Nowroozi E, Tondi B (2018) CNN-based detection of generic contrast adjustment with jpeg post-processing, In: Proceedings of IEEE international conference on image processing (ICIP), Oct 2018, pp 3803–3807
43.
go back to reference Boroumand M, Fridrich J (2018) Deep learning for detecting processing history of images. Electron Imaging 2018:213-1CrossRef Boroumand M, Fridrich J (2018) Deep learning for detecting processing history of images. Electron Imaging 2018:213-1CrossRef
44.
go back to reference Huang G, Liu Z, Maaten Lvd, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 2261–2269 Huang G, Liu Z, Maaten Lvd, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 2261–2269
45.
go back to reference Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: International conference on digital image computing: technology and applications (DICTA). IEEE, pp 1–6 Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? In: International conference on digital image computing: technology and applications (DICTA). IEEE, pp 1–6
46.
go back to reference Stamm M, Bestagini P, Marcenaro L, Campisi P (2018) Forensic camera model identification: Highlights from the IEEE signal processing cup 2018 student competition [sp competitions]. IEEE Signal Process Mag 35(5):168–174CrossRef Stamm M, Bestagini P, Marcenaro L, Campisi P (2018) Forensic camera model identification: Highlights from the IEEE signal processing cup 2018 student competition [sp competitions]. IEEE Signal Process Mag 35(5):168–174CrossRef
47.
go back to reference Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. Univ Montreal 1341:1 Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. Univ Montreal 1341:1
Metadata
Title
RemNet: remnant convolutional neural network for camera model identification
Authors
Abdul Muntakim Rafi
Thamidul Islam Tonmoy
Uday Kamal
Q. M. Jonathan Wu
Md. Kamrul Hasan
Publication date
30-07-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 8/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05220-y

Other articles of this Issue 8/2021

Neural Computing and Applications 8/2021 Go to the issue

Premium Partner