Skip to main content
Top

2023 | OriginalPaper | Chapter

10. Removal and Change-in-Ratio Methods

Authors : George A. F. Seber, Matthew R. Schofield

Published in: Estimating Presence and Abundance of Closed Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is about the so-called removal method for estimating the size of a closed population. It consists of removing a sequence of samples from the population, which can be useful for dealing with an invasive species where depletion is desirable. It has also been used for capture–recapture experiments when recaptures are ignored so that an individual recaptured is effectively “removed” from the study. This can avoid such problems as the possible effect of a declining population on the probability of capture p or “catchability.” The alternative is to temporarily remove individuals using, for example, electrofishing.
If the probability of capture is allowed to vary, then we have too many parameters, together with the initial population size, to estimate. Several solutions are presented for the probability parameters: (1) use logistic regression for the probabilities; (2) assume p is constant, and also use regression models; (3) combine with a marked release; and (4) use knowledge of sampling effort. Variable catchability can be directly modeled in various ways using the so-called generalized removal model and Bayesian methods. Because of their usefulness, two and three removals are given special attention. Subpopulations are also considered, including multiple sites. Removal methods for point-count methods (Chap. 10) and times to first capture (detection), the so-called TTDD model, are described.
Indirectly related to the removal method for estimating population sizes is the so-called change-in-ratio (CIR) method where removals are carried out from two or more classes (e.g., males and females) changing the class ratios, and for two or more removals. Various associated parameters such as exploitation rate are estimated, and effort information can be incorporated. Omnibus removal methods combine various methods such the removal, CIR, and the index removal method that are described in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Baumgartner, L. J. (2004). Population estimation methods to quantify temporal variation in fish accumulations downstream of a weir. Fisheries Management and Ecology, 13(6), 355–364.CrossRef Baumgartner, L. J. (2004). Population estimation methods to quantify temporal variation in fish accumulations downstream of a weir. Fisheries Management and Ecology, 13(6), 355–364.CrossRef
go back to reference Bedrick, E. J. (1994). Maximum-likelihood estimation for the removal method. Canadian Journal of Statistics, 22(2), 285–293.CrossRef Bedrick, E. J. (1994). Maximum-likelihood estimation for the removal method. Canadian Journal of Statistics, 22(2), 285–293.CrossRef
go back to reference Benejam, L., Alcaraz, C., & et al. (2011). Fish catchability and comparison of four electrofishing crews in Mediterranean streams. Fisheries Research, 123–124, 9–15. Benejam, L., Alcaraz, C., & et al. (2011). Fish catchability and comparison of four electrofishing crews in Mediterranean streams. Fisheries Research, 123–124, 9–15.
go back to reference Bohrmann, T. F., & Christman, M. C. (2012). Evaluating sampling efficiency in depletion surveys using hierarchical Bayes. Canadian Journal of Fisheries and Aquatic Sciences, 69(6), 1080–1090.CrossRef Bohrmann, T. F., & Christman, M. C. (2012). Evaluating sampling efficiency in depletion surveys using hierarchical Bayes. Canadian Journal of Fisheries and Aquatic Sciences, 69(6), 1080–1090.CrossRef
go back to reference Bohrmann, T. F., & Christman, M. C. (2013). Optimal allocation of sampling effort in depletion surveys source. Journal of Agricultural, Biological, and Environmental Statistics, 18(2), 218–233.CrossRef Bohrmann, T. F., & Christman, M. C. (2013). Optimal allocation of sampling effort in depletion surveys source. Journal of Agricultural, Biological, and Environmental Statistics, 18(2), 218–233.CrossRef
go back to reference Bord, S., Bioche, C., & Druilhet, P. (2018). A cautionary note on Bayesian estimation of population size by removal sampling with diffuse priors. Biometrical Journal, 60(3), 450–462.PubMedCrossRef Bord, S., Bioche, C., & Druilhet, P. (2018). A cautionary note on Bayesian estimation of population size by removal sampling with diffuse priors. Biometrical Journal, 60(3), 450–462.PubMedCrossRef
go back to reference Bord, S., Druilhet, P., Gasqui, P., Abrial, D., & Vourc’h, G. (2014). Bayesian estimation of abundance based on removal sampling under weak assumption of closed population with catchability depending on environmental conditions. Application to tick abundance. Ecological modelling, 274, 72–79.CrossRef Bord, S., Druilhet, P., Gasqui, P., Abrial, D., & Vourc’h, G. (2014). Bayesian estimation of abundance based on removal sampling under weak assumption of closed population with catchability depending on environmental conditions. Application to tick abundance. Ecological modelling, 274, 72–79.CrossRef
go back to reference Burnham, K. P., & Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65(3), 625–633.CrossRef Burnham, K. P., & Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65(3), 625–633.CrossRef
go back to reference Carle, F. L., & Strub, M. R. (1978). A new method for estimating population size from removal data. Biometrics, 34(4), 621–630.CrossRef Carle, F. L., & Strub, M. R. (1978). A new method for estimating population size from removal data. Biometrics, 34(4), 621–630.CrossRef
go back to reference Carrier, P., Rosenfeld, J. S., & Johnson, R. M. (2009). Dual-gear approach for calibrating electric fishing capture efficiency and abundance estimates. Fisheries Management and Ecology, 16(2), 139–146.CrossRef Carrier, P., Rosenfeld, J. S., & Johnson, R. M. (2009). Dual-gear approach for calibrating electric fishing capture efficiency and abundance estimates. Fisheries Management and Ecology, 16(2), 139–146.CrossRef
go back to reference Chapman, D. G. (1954). The estimation of biological populations. Annals of Mathematical Statistics, 25(1), 1–15.CrossRef Chapman, D. G. (1954). The estimation of biological populations. Annals of Mathematical Statistics, 25(1), 1–15.CrossRef
go back to reference Chapman, D. G. (1955). Population estimation based on change of composition caused by selective removal. Biometrika, 42(3–4), 279–290.CrossRef Chapman, D. G. (1955). Population estimation based on change of composition caused by selective removal. Biometrika, 42(3–4), 279–290.CrossRef
go back to reference Chapman, D. G. & Murphy, G. I. (1965). Estimates of population and mortality from survey-removal records. Biometrics, 21, 921–935.CrossRef Chapman, D. G. & Murphy, G. I. (1965). Estimates of population and mortality from survey-removal records. Biometrics, 21, 921–935.CrossRef
go back to reference Chee, Y. E., & Wintle, B. A. (2010). Linking modelling, monitoring and management: An integrated approach to controlling overabundant wildlife. Journal of Applied Ecology, 47(6), 1169–1178.CrossRef Chee, Y. E., & Wintle, B. A. (2010). Linking modelling, monitoring and management: An integrated approach to controlling overabundant wildlife. Journal of Applied Ecology, 47(6), 1169–1178.CrossRef
go back to reference Chen, C.-L., Pollock, K. H., & Hoenig, J. M. (1998). Combining change-in-ratio, index-removal, and removal models for estimating population size. Biometrics, 54(3), 815–827.CrossRef Chen, C.-L., Pollock, K. H., & Hoenig, J. M. (1998). Combining change-in-ratio, index-removal, and removal models for estimating population size. Biometrics, 54(3), 815–827.CrossRef
go back to reference Claytor, R., & Allard, J. (2003). Change-in-ratio estimates of lobster exploitation rate using sampling concurrent with fishing. Canadian Journal of Fisheries and Aquatic Sciences, 60(10), 1190–1203.CrossRef Claytor, R., & Allard, J. (2003). Change-in-ratio estimates of lobster exploitation rate using sampling concurrent with fishing. Canadian Journal of Fisheries and Aquatic Sciences, 60(10), 1190–1203.CrossRef
go back to reference Dauwalter, D. C., & Fisher, W. L. (2007). Electrofishing capture probability of smallmouth bass in streams. North American Journal of Fisheries Management, 27(1), 162–171.CrossRef Dauwalter, D. C., & Fisher, W. L. (2007). Electrofishing capture probability of smallmouth bass in streams. North American Journal of Fisheries Management, 27(1), 162–171.CrossRef
go back to reference Davis, A. J., Hooten, M. B., & et al. (2016). Inferring invasive species abundance using removal data from management actions. Ecological Applications, 26(7), 2339–2346. Davis, A. J., Hooten, M. B., & et al. (2016). Inferring invasive species abundance using removal data from management actions. Ecological Applications, 26(7), 2339–2346.
go back to reference Davis, D. E. (1963). Estimating the numbers of game populations. In H. S. Mosby (Ed.), Wildlife investigational techniques (2nd ed., pp. 89–118). Washington: The Wildlife Society. Davis, D. E. (1963). Estimating the numbers of game populations. In H. S. Mosby (Ed.), Wildlife investigational techniques (2nd ed., pp. 89–118). Washington: The Wildlife Society.
go back to reference Dawe, E. G,, Hoenig, J. M., & Xu, X. (1993). Change-in-ratio and index-removal methods for population assessment and their application to snow crab (Chionoecetes opilio). Canadian Journal of Fisheries and Aquatic Sciences, 50(7), 1467–1476.CrossRef Dawe, E. G,, Hoenig, J. M., & Xu, X. (1993). Change-in-ratio and index-removal methods for population assessment and their application to snow crab (Chionoecetes opilio). Canadian Journal of Fisheries and Aquatic Sciences, 50(7), 1467–1476.CrossRef
go back to reference Dawid, A. P., & Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21(3), 1272–1317.CrossRef Dawid, A. P., & Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21(3), 1272–1317.CrossRef
go back to reference De Lury, D. B. (1947). On the estimation of biological populations. Biometrics, 3(4), 145–167.CrossRef De Lury, D. B. (1947). On the estimation of biological populations. Biometrics, 3(4), 145–167.CrossRef
go back to reference De Rivera, O. R., McCrea, R., & Margalida, A. (2021). Removal modelling in ecology: A systematic review. PloS One, 16(3), e0229965–e0229965.CrossRef De Rivera, O. R., McCrea, R., & Margalida, A. (2021). Removal modelling in ecology: A systematic review. PloS One, 16(3), e0229965–e0229965.CrossRef
go back to reference Dodd, Jr., C. K., & Dorazio, R. M. (2004). Using counts to simultaneously estimate abundance and detection probabilities in a salamander community. Herpetologica, 60(4), 468–478.CrossRef Dodd, Jr., C. K., & Dorazio, R. M. (2004). Using counts to simultaneously estimate abundance and detection probabilities in a salamander community. Herpetologica, 60(4), 468–478.CrossRef
go back to reference Dorazio, R. M., Jelks, H. L., & Jordan, F. (2005). Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations. Biometrics, 61(4), 1093–1101.PubMedCrossRef Dorazio, R. M., Jelks, H. L., & Jordan, F. (2005). Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations. Biometrics, 61(4), 1093–1101.PubMedCrossRef
go back to reference Eberhardt, L. L. (1982). Calibrating an index using removal data. Journal of Wildlife Management, 46(3), 734–740.CrossRef Eberhardt, L. L. (1982). Calibrating an index using removal data. Journal of Wildlife Management, 46(3), 734–740.CrossRef
go back to reference Farnsworth, G. L., Pollock, K. H., & et al. (2002). A removal model for estimating detection probabilities from point-count surveys. Auk, 119(2), 414–425. Farnsworth, G. L., Pollock, K. H., & et al. (2002). A removal model for estimating detection probabilities from point-count surveys. Auk, 119(2), 414–425.
go back to reference Foley, K., Rosenberger, A., & Mueter, F. (2015). Effectiveness of single-pass backpack electrofishing to estimate juvenile coho salmon abundance in Alaskan headwater streams. Fisheries Science, 81(4), 601–610.CrossRef Foley, K., Rosenberger, A., & Mueter, F. (2015). Effectiveness of single-pass backpack electrofishing to estimate juvenile coho salmon abundance in Alaskan headwater streams. Fisheries Science, 81(4), 601–610.CrossRef
go back to reference Frusher, S. D., Hoenig, J. M, & Ihde, T. (2007). Evaluating catchability assumptions for change-in-ratio and index-removal estimators, with application to southern rock lobster. Fisheries Research, 84(2), 254–262CrossRef Frusher, S. D., Hoenig, J. M, & Ihde, T. (2007). Evaluating catchability assumptions for change-in-ratio and index-removal estimators, with application to southern rock lobster. Fisheries Research, 84(2), 254–262CrossRef
go back to reference Gatz, A. J., Jr., & Loar, J. M. (1988). Petersen and removal population size estimates: Combining methods to adjust and interpret results when assumptions are violated. Environmental Biology of Fishes, 21(4), 293–307.CrossRef Gatz, A. J., Jr., & Loar, J. M. (1988). Petersen and removal population size estimates: Combining methods to adjust and interpret results when assumptions are violated. Environmental Biology of Fishes, 21(4), 293–307.CrossRef
go back to reference George, J. C., Zeh, J., Suydam, R., & Clark, C. (2004). Abundance and population trend (1978-2001) of western Arctic bow-head whales surveyed near Barrow, Alaska. Marine Mammal Science, 20(4), 755–773.CrossRef George, J. C., Zeh, J., Suydam, R., & Clark, C. (2004). Abundance and population trend (1978-2001) of western Arctic bow-head whales surveyed near Barrow, Alaska. Marine Mammal Science, 20(4), 755–773.CrossRef
go back to reference Germano, T. M., Field, K. J., & et al. (2015). Mitigation-driven translocations: Are we moving wildlife in the right direction? Frontiers in Ecology and the Environment, 13(2), 100–105. Germano, T. M., Field, K. J., & et al. (2015). Mitigation-driven translocations: Are we moving wildlife in the right direction? Frontiers in Ecology and the Environment, 13(2), 100–105.
go back to reference Good, I. J., Lewis, B. C., Gaskins, R. A., & Howell, L. W. (1979). Population estimation by the removal method assuming proportional trapping. Biometrika, 66(3), 485–494.CrossRef Good, I. J., Lewis, B. C., Gaskins, R. A., & Howell, L. W. (1979). Population estimation by the removal method assuming proportional trapping. Biometrika, 66(3), 485–494.CrossRef
go back to reference Haines, L. M. (2020). Multinomial N-mixture models for removal sampling. Biometrics, 76(2), 540–548.PubMedCrossRef Haines, L. M. (2020). Multinomial N-mixture models for removal sampling. Biometrics, 76(2), 540–548.PubMedCrossRef
go back to reference Harding, C. M., Heathwood, A. W., Hunt, R. G., & Read, K. L. Q. (1984). The estimation of animal population size by the removal method. Journal of the Royal Statistical Society. Series C (Applied Statistics), 33 (2), 196–202. Harding, C. M., Heathwood, A. W., Hunt, R. G., & Read, K. L. Q. (1984). The estimation of animal population size by the removal method. Journal of the Royal Statistical Society. Series C (Applied Statistics), 33 (2), 196–202.
go back to reference Harris, J. E., Jolley, J. C., Silver, G. S., Yuen, H., & Whitesel, T. A. (2016). An experimental evaluation of electrofishing catchability and catch depletion abundance estimates of larval lampreys in a wadeable stream: Use of a hierarchical approach. Transactions of the American Fisheries Society, 145(5), 1006–1017.CrossRef Harris, J. E., Jolley, J. C., Silver, G. S., Yuen, H., & Whitesel, T. A. (2016). An experimental evaluation of electrofishing catchability and catch depletion abundance estimates of larval lampreys in a wadeable stream: Use of a hierarchical approach. Transactions of the American Fisheries Society, 145(5), 1006–1017.CrossRef
go back to reference Hayne, D. W. (1949b). Two methods for estimating populations from trapping records, Journal of Mammalogy, 39, 399–411.CrossRef Hayne, D. W. (1949b). Two methods for estimating populations from trapping records, Journal of Mammalogy, 39, 399–411.CrossRef
go back to reference Hirst, D. (1994). An improved removal method for estimating animal abundance. Biometrics, 50(2), 501–505.PubMedCrossRef Hirst, D. (1994). An improved removal method for estimating animal abundance. Biometrics, 50(2), 501–505.PubMedCrossRef
go back to reference Ihde, T. F., Hoenig, J. M., & Frusher, S. D. (2008a). Evaluation of a multi-year index-removal abundance estimator, with application to a Tasmanian rock lobster fishery. Fisheries Research, 89(1), 26–36.CrossRef Ihde, T. F., Hoenig, J. M., & Frusher, S. D. (2008a). Evaluation of a multi-year index-removal abundance estimator, with application to a Tasmanian rock lobster fishery. Fisheries Research, 89(1), 26–36.CrossRef
go back to reference Ihde, T. F., Hoenig, J. M., & Frusher, S. D. (2008b). An index-removal abundance estimator that allows for seasonal change in catchability, with application to southern rock lobster Jasus edwardsii. Transactions of the American Fisheries Society, 137(3), 720–735.CrossRef Ihde, T. F., Hoenig, J. M., & Frusher, S. D. (2008b). An index-removal abundance estimator that allows for seasonal change in catchability, with application to southern rock lobster Jasus edwardsii. Transactions of the American Fisheries Society, 137(3), 720–735.CrossRef
go back to reference Laplanche, C. (2010). A hierarchical model to estimate fish abundance in alpine streams by using removal sampling data from multiple locations. Biometrical Journal, 52(2), 209–221.PubMedCrossRef Laplanche, C. (2010). A hierarchical model to estimate fish abundance in alpine streams by using removal sampling data from multiple locations. Biometrical Journal, 52(2), 209–221.PubMedCrossRef
go back to reference Liu, L., & Yip, P. S. F. (2002). Estimating population size in proportional trapping-removal models. Statistica Sinica, 13(1), 243–254. Liu, L., & Yip, P. S. F. (2002). Estimating population size in proportional trapping-removal models. Statistica Sinica, 13(1), 243–254.
go back to reference Liu, L., Yip, P. S. F., & Watson, R. K. (2003). Removal process estimation of population size for a population with known sex ratio. Environmental and Ecological Statistics, 10(2), 281–292.CrossRef Liu, L., Yip, P. S. F., & Watson, R. K. (2003). Removal process estimation of population size for a population with known sex ratio. Environmental and Ecological Statistics, 10(2), 281–292.CrossRef
go back to reference Mäntyniemi, S., Romakkaniemi, A., & Arjas, E. (2005). Bayesian removal estimation of a population size under unequal catchability. Canadian Journal of Fisheries and Aquatic Sciences, 62(2), 291–300.CrossRef Mäntyniemi, S., Romakkaniemi, A., & Arjas, E. (2005). Bayesian removal estimation of a population size under unequal catchability. Canadian Journal of Fisheries and Aquatic Sciences, 62(2), 291–300.CrossRef
go back to reference Martin-Schwarze, A., Niemi, J., & Dixon, P. (2017). Assessing the impacts of time-to-detection distribution assumptions on detection probability estimation. Journal of Agricultural, Biological, and Environmental Statistics, 22(4), 465–480.CrossRef Martin-Schwarze, A., Niemi, J., & Dixon, P. (2017). Assessing the impacts of time-to-detection distribution assumptions on detection probability estimation. Journal of Agricultural, Biological, and Environmental Statistics, 22(4), 465–480.CrossRef
go back to reference Matechou, E., McCrea, R. S., Morgan, B. J. T., Nash, D. J., & Griffiths, R. A. (2016). Open models for removal data. Annals of Applied Statistics, 10(3), 1572–1589.CrossRef Matechou, E., McCrea, R. S., Morgan, B. J. T., Nash, D. J., & Griffiths, R. A. (2016). Open models for removal data. Annals of Applied Statistics, 10(3), 1572–1589.CrossRef
go back to reference Meador, M. R., McIntyre, J. P., & Pollock, K. H. (2011). Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure. Transactions of the American Fisheries Society, 132(1), 39–46.CrossRef Meador, M. R., McIntyre, J. P., & Pollock, K. H. (2011). Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure. Transactions of the American Fisheries Society, 132(1), 39–46.CrossRef
go back to reference Meyer, K. A., & High, B. (2011). Accuracy of removal electrofishing estimates of trout abundance in Rocky Mountain streams. North American Journal of Fisheries Management, 31(5), 923–933.CrossRef Meyer, K. A., & High, B. (2011). Accuracy of removal electrofishing estimates of trout abundance in Rocky Mountain streams. North American Journal of Fisheries Management, 31(5), 923–933.CrossRef
go back to reference Moran, P. A. P. (1951). A mathematical theory of animal trapping. Biometrika, 38(3–4), 307–311.CrossRef Moran, P. A. P. (1951). A mathematical theory of animal trapping. Biometrika, 38(3–4), 307–311.CrossRef
go back to reference Otis, D. L. (1980). An extension of the change-in-ratio method. Biometrics, 36(1), 141–147.CrossRef Otis, D. L. (1980). An extension of the change-in-ratio method. Biometrics, 36(1), 141–147.CrossRef
go back to reference Paulik, G. J., & Robson, D. S. (1969). Statistical calculations for change-in-ratio estimators of population parameters. Journal of Wildlife Management, 33(1), 1–27.CrossRef Paulik, G. J., & Robson, D. S. (1969). Statistical calculations for change-in-ratio estimators of population parameters. Journal of Wildlife Management, 33(1), 1–27.CrossRef
go back to reference Peterson, J. T., Thurow, R. F., & Guzevich, J. W. (2004). An evaluation of multi-pass electrofishing for estimating the abundance of stream-dwelling salmonids. Transactions of the American Fisheries Society, 133(2), 462–475.CrossRef Peterson, J. T., Thurow, R. F., & Guzevich, J. W. (2004). An evaluation of multi-pass electrofishing for estimating the abundance of stream-dwelling salmonids. Transactions of the American Fisheries Society, 133(2), 462–475.CrossRef
go back to reference Petrides, G. A. (1949). View points on the analysis of open season sex and age ratios. Transactions of the North American Wildlife Conference, 14, 391–410. Petrides, G. A. (1949). View points on the analysis of open season sex and age ratios. Transactions of the North American Wildlife Conference, 14, 391–410.
go back to reference Pollock, K. H. (1982). A capture-recapture design robust to unequal probability of capture. Journal of Wildlife Management, 46(3), 757–760.CrossRef Pollock, K. H. (1982). A capture-recapture design robust to unequal probability of capture. Journal of Wildlife Management, 46(3), 757–760.CrossRef
go back to reference Pollock, K. H., & Otto, M. C. (1983). Robust estimation of population size in a closed animal populations from capture-recapture experiments. Biometrics, 39(4), 1035–1049.PubMedCrossRef Pollock, K. H., & Otto, M. C. (1983). Robust estimation of population size in a closed animal populations from capture-recapture experiments. Biometrics, 39(4), 1035–1049.PubMedCrossRef
go back to reference Prevost, E., Cuzol, A., Bagliniere, J.-L., Parent, E., & Rivot, E. (2008). Hierarchical Bayesian modelling with habitat and time covariates for estimating riverine fish population size by successive removal method. Canadian Journal of Fisheries and Aquatic Sciences, 65(1), 117–133.CrossRef Prevost, E., Cuzol, A., Bagliniere, J.-L., Parent, E., & Rivot, E. (2008). Hierarchical Bayesian modelling with habitat and time covariates for estimating riverine fish population size by successive removal method. Canadian Journal of Fisheries and Aquatic Sciences, 65(1), 117–133.CrossRef
go back to reference Rosenberger, A. E., & Dunham, J. B. (2005). Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams. North American Journal of Fisheries Management, 25(4), 1395–1410.CrossRef Rosenberger, A. E., & Dunham, J. B. (2005). Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams. North American Journal of Fisheries Management, 25(4), 1395–1410.CrossRef
go back to reference Ruiz, P., & Laplanche, C. (2010). A hierarchical model to estimate the abundance and biomass of salmonids by using removal sampling and biometric data from multiple locations. Canadian Journal of Fisheries and Aquatic Sciences, 67(12), 2032–2044.CrossRef Ruiz, P., & Laplanche, C. (2010). A hierarchical model to estimate the abundance and biomass of salmonids by using removal sampling and biometric data from multiple locations. Canadian Journal of Fisheries and Aquatic Sciences, 67(12), 2032–2044.CrossRef
go back to reference Seber, G. A. F. (1970). The effects of trap response on tag recapture estimates. Biometrics, 26(1), 13–22.CrossRef Seber, G. A. F. (1970). The effects of trap response on tag recapture estimates. Biometrics, 26(1), 13–22.CrossRef
go back to reference Seber, G. A. F. (1982). The estimation of animal abundance (2nd ed.). London: Griffin. Reprinted in paperback by the Blackburn press, Caldwell, N. J. (2002). Seber, G. A. F. (1982). The estimation of animal abundance (2nd ed.). London: Griffin. Reprinted in paperback by the Blackburn press, Caldwell, N. J. (2002).
go back to reference Seber, G. A. F. (1984). Multivariate observations. New York: Wiley. Also available in paperback, 2004. Seber, G. A. F. (1984). Multivariate observations. New York: Wiley. Also available in paperback, 2004.
go back to reference Seber, G. A. F., & Le Cren, E. D. (1967). Estimating population parameters from catches large relative to the population. Journal of Animal Ecology, 36(3), 631–643.CrossRef Seber, G. A. F., & Le Cren, E. D. (1967). Estimating population parameters from catches large relative to the population. Journal of Animal Ecology, 36(3), 631–643.CrossRef
go back to reference Seber, G. A. F., & Whale, J. F. (1970). The removal method for two and three samples. Biometrics, 26(3), 393–400.PubMedCrossRef Seber, G. A. F., & Whale, J. F. (1970). The removal method for two and three samples. Biometrics, 26(3), 393–400.PubMedCrossRef
go back to reference Skalski, J., & Millspaugh, J. J. (2006). Application of multidimensional change-in-ratio methods using program USER. Wildlife Society Bulletin, 34(2), 433–439.CrossRef Skalski, J., & Millspaugh, J. J. (2006). Application of multidimensional change-in-ratio methods using program USER. Wildlife Society Bulletin, 34(2), 433–439.CrossRef
go back to reference Skalski, J. R., & Robson, D. S. (1982). A mark and removal field procedure for estimating population abundance. Journal of Wildlife Management, 46(3), 741–751.CrossRef Skalski, J. R., & Robson, D. S. (1982). A mark and removal field procedure for estimating population abundance. Journal of Wildlife Management, 46(3), 741–751.CrossRef
go back to reference Skalski, J. R., Ryding, K. E., & Millspaugh, J. J. (2005). Wildlife demography: Analysis of sex, age, and count data. San Diego, California: Academic Press. Skalski, J. R., Ryding, K. E., & Millspaugh, J. J. (2005). Wildlife demography: Analysis of sex, age, and count data. San Diego, California: Academic Press.
go back to reference Solberg, E. J., Grøtan, V., Rolandsen, C. M., Brøseth, H., & Brainerd, S. (2005). Change-in-sex ratio as an estimator of population size for Norwegian moose Alces alces. Wildlife Biology, 11(2), 163-172.CrossRef Solberg, E. J., Grøtan, V., Rolandsen, C. M., Brøseth, H., & Brainerd, S. (2005). Change-in-sex ratio as an estimator of population size for Norwegian moose Alces alces. Wildlife Biology, 11(2), 163-172.CrossRef
go back to reference St. Clair, K., Dunton, E., & Giudice, J. (2013). A comparison of models using removal effort to estimate animal abundance. Journal of Applied Statistics, 40(3), 527–545.CrossRef St. Clair, K., Dunton, E., & Giudice, J. (2013). A comparison of models using removal effort to estimate animal abundance. Journal of Applied Statistics, 40(3), 527–545.CrossRef
go back to reference Udevitz, M. S., & Pollock, K. P. (1991). Change-in-ratio estimators for populations with more than two subclasses. Biometrics, 47(4), 1531–1546.CrossRef Udevitz, M. S., & Pollock, K. P. (1991). Change-in-ratio estimators for populations with more than two subclasses. Biometrics, 47(4), 1531–1546.CrossRef
go back to reference Udevitz, M. S., & Pollock, K. P. (1995). Using effort information with change-in-ratio data for population estimation. Biometrics, 51(2), 471–481.CrossRef Udevitz, M. S., & Pollock, K. P. (1995). Using effort information with change-in-ratio data for population estimation. Biometrics, 51(2), 471–481.CrossRef
go back to reference Van Deventer, J., & Platts, W. S. (1989). Microcomputer software system for generating population statistics from electrofishing data–user’s guide for MicroFish 3.0. In U.S. Forest Service General Technical Report INT-254. Van Deventer, J., & Platts, W. S. (1989). Microcomputer software system for generating population statistics from electrofishing data–user’s guide for MicroFish 3.0. In U.S. Forest Service General Technical Report INT-254.
go back to reference Van Poortena, B. T., Barrett, B., Walters, C. J., & Ahrens, R. N. M. (2017). Are removal-based abundance models robust to fish behavior? Fisheries Research, 196, 160–169.CrossRef Van Poortena, B. T., Barrett, B., Walters, C. J., & Ahrens, R. N. M. (2017). Are removal-based abundance models robust to fish behavior? Fisheries Research, 196, 160–169.CrossRef
go back to reference Wyatt, R. (2002). Estimating riverine fish population size from single- and multiple-pass removal sampling using a hierarchical model. Canadian Journal of Fisheries and Aquatic Sciences, 59(4), 695–706.CrossRef Wyatt, R. (2002). Estimating riverine fish population size from single- and multiple-pass removal sampling using a hierarchical model. Canadian Journal of Fisheries and Aquatic Sciences, 59(4), 695–706.CrossRef
go back to reference Yip, P. S. F., & Fong, D. Y. T. (1993). Estimating population size from a removal experiment. Statistics and Probability Letters, 16(2), 129–135.CrossRef Yip, P. S. F., & Fong, D. Y. T. (1993). Estimating population size from a removal experiment. Statistics and Probability Letters, 16(2), 129–135.CrossRef
go back to reference You, N., & Liu, L. (2006). Proportional trapping-removal model with a known ratio. Communications in Statistics—Theory and Methods, 35(1), 33–41.CrossRef You, N., & Liu, L. (2006). Proportional trapping-removal model with a known ratio. Communications in Statistics—Theory and Methods, 35(1), 33–41.CrossRef
go back to reference Zhou, M., McCrea, R. S., Matechou, E., Cole, D. J., & Griffiths, R. A. (2018). Removal models accounting for temporary emigration. Biometrics, 75(1), 24–35.PubMedPubMedCentralCrossRef Zhou, M., McCrea, R. S., Matechou, E., Cole, D. J., & Griffiths, R. A. (2018). Removal models accounting for temporary emigration. Biometrics, 75(1), 24–35.PubMedPubMedCentralCrossRef
go back to reference Zippin, C. (1956). An evaluation of the removal method of estimating animal populations. Biometrics, 12(2), 163–189.CrossRef Zippin, C. (1956). An evaluation of the removal method of estimating animal populations. Biometrics, 12(2), 163–189.CrossRef
go back to reference Zippin, C. (1958). The removal method of population estimation. Journal of Wildlife Management, 22(1), 82–90.CrossRef Zippin, C. (1958). The removal method of population estimation. Journal of Wildlife Management, 22(1), 82–90.CrossRef
Metadata
Title
Removal and Change-in-Ratio Methods
Authors
George A. F. Seber
Matthew R. Schofield
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-39834-6_10

Premium Partner