Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Renewable Resources: From Refinery to Bio-refinery

Authors : Angelo Albini, Stefano Protti

Published in: Paradigms in Green Chemistry and Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chemists are educated to consider petrochemicals as the source of both new molecules and energy. However, biological material (biomass) from living or recently living organisms, not metabolized for thousands of years into petrol and coal, offers an alternative feedstock that is elaborated in the so called bio-refineries to a variety of platform chemicals (alcohols, acids, esters, carbonyls, hydrocarbons). The environmental performance of fermentative and biocatalytic methods is compared with that from fossil fuel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The prefix bio for biocatalytic products from renewable resources seems to be strongly established in the literature, although this has obviously no chemical meaning.
 
Literature
1.
go back to reference Metzger JO (2004) Agenda 21 as a guide for green chemistry research and a sustainable future. Green Chem 6:G15–G16CrossRef Metzger JO (2004) Agenda 21 as a guide for green chemistry research and a sustainable future. Green Chem 6:G15–G16CrossRef
2.
go back to reference Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58CrossRef Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58CrossRef
3.
go back to reference Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRef Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRef
4.
go back to reference Röper H (2002) Renewable raw materials in Europe—industrial utilization of starch and sugar. Starch/Stärke 54:89–99CrossRef Röper H (2002) Renewable raw materials in Europe—industrial utilization of starch and sugar. Starch/Stärke 54:89–99CrossRef
5.
go back to reference Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183–207CrossRef Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183–207CrossRef
6.
go back to reference Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem 16:950–963; Gallezot P (2007) Process options for converting renewable feedstocks to bioproducts. Green Chem 9:295–302 Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem 16:950–963; Gallezot P (2007) Process options for converting renewable feedstocks to bioproducts. Green Chem 9:295–302
7.
go back to reference Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progr Energy Comb Sci 37:52–68CrossRef Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progr Energy Comb Sci 37:52–68CrossRef
8.
go back to reference Harmsen PFH, Hackmann MM, Bosenergy HL (2014) Green building blocks for bio-based plastics. Biofuels Bioprod Biorefin 8:306–324CrossRef Harmsen PFH, Hackmann MM, Bosenergy HL (2014) Green building blocks for bio-based plastics. Biofuels Bioprod Biorefin 8:306–324CrossRef
9.
go back to reference Sagar AD, Kartha S (2007) Bioenergy and sustainable development? Ann Rev Environ Resour 32:131–167CrossRef Sagar AD, Kartha S (2007) Bioenergy and sustainable development? Ann Rev Environ Resour 32:131–167CrossRef
10.
go back to reference Werpy T, Petersen G (eds) (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas, DOE/GO-102004-1992, 1 Aug 2004 Werpy T, Petersen G (eds) (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas, DOE/GO-102004-1992, 1 Aug 2004
11.
go back to reference Bozell JJ, Petersenm GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef Bozell JJ, Petersenm GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef
12.
go back to reference Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991CrossRef Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991CrossRef
13.
go back to reference Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626CrossRef Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626CrossRef
14.
go back to reference see for review: Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Biores Technol 101:4980–4991; Singh A, Pant D, Korres NE, Nizami A-S, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012 see for review: Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Biores Technol 101:4980–4991; Singh A, Pant D, Korres NE, Nizami A-S, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012
15.
go back to reference Guo M, Littlewood J, Joyce J, Murphy R (2014) The environmental profile of bioethanol produced from current and potential future poplar feedstocks in the EU. Green Chem 16:4680–4695CrossRef Guo M, Littlewood J, Joyce J, Murphy R (2014) The environmental profile of bioethanol produced from current and potential future poplar feedstocks in the EU. Green Chem 16:4680–4695CrossRef
16.
go back to reference Jin C, Yao M, Liu H, Leed CF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15:4080–4106CrossRef Jin C, Yao M, Liu H, Leed CF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15:4080–4106CrossRef
17.
go back to reference Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343CrossRef Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343CrossRef
18.
go back to reference (a) Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Progr Energy Comb Sci 38:522–550. (b) Material efficiency is defined as 1/(E + 1) where one is the sum of all the useful products, see Sheldon RA, Sanders JPM (2015) Toward concise metrics for the production of chemicals fromrenewable biomass. Cat Today 239:3–6 (a) Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Progr Energy Comb Sci 38:522–550. (b) Material efficiency is defined as 1/(E + 1) where one is the sum of all the useful products, see Sheldon RA, Sanders JPM (2015) Toward concise metrics for the production of chemicals fromrenewable biomass. Cat Today 239:3–6
20.
go back to reference Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRef Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRef
21.
go back to reference Curran MA (2000) Life cycle assessment: an international experience. Environ Prog 19:65–71; US Environmental Protection Agency (1997) Streamlined life-cycle assessment of 1,4-butanediol produced from petroleum feedstocks versus bio derived feedstocks. National Risk Management Research Laboratory, Cincinnati, Ohio Curran MA (2000) Life cycle assessment: an international experience. Environ Prog 19:65–71; US Environmental Protection Agency (1997) Streamlined life-cycle assessment of 1,4-butanediol produced from petroleum feedstocks versus bio derived feedstocks. National Risk Management Research Laboratory, Cincinnati, Ohio
22.
go back to reference Marinas A, Bruijnicx P, Ftouni J, Urbano FJ, Pinel C (2015) Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: a comparison. Cat Today 239:31–37CrossRef Marinas A, Bruijnicx P, Ftouni J, Urbano FJ, Pinel C (2015) Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: a comparison. Cat Today 239:31–37CrossRef
23.
go back to reference Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Cat A Gen 385:1–13CrossRef Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Cat A Gen 385:1–13CrossRef
24.
go back to reference See for instance Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A 145:211–224. See for other procedures for the synthesis of 5-hydroxymethylfurfural see: Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-Hydroxymethylfurfural. Science 316:1597–1600; Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by common Lewis acid SnCl4 in an ionic liquid. Green Chem 11:1746–1749; Su Y, Brown HM, Huang X, Zhou X-d, Amonette JE, Zhang ZC (2009) Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl Cat A Gen 361:17–122; Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793 See for instance Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A 145:211–224. See for other procedures for the synthesis of 5-hydroxymethylfurfural see: Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-Hydroxymethylfurfural. Science 316:1597–1600; Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by common Lewis acid SnCl4 in an ionic liquid. Green Chem 11:1746–1749; Su Y, Brown HM, Huang X, Zhou X-d, Amonette JE, Zhang ZC (2009) Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl Cat A Gen 361:17–122; Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793
25.
go back to reference Chheda JN, Romàn-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350CrossRef Chheda JN, Romàn-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350CrossRef
26.
go back to reference Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural, a promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166; Huber GW, Cheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450 Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural, a promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166; Huber GW, Cheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450
27.
go back to reference Schmidt LD, Dauenhauer PJ (2007) Chemical engineering: hybrid routes to biofuels. Nature 447:914–915CrossRef Schmidt LD, Dauenhauer PJ (2007) Chemical engineering: hybrid routes to biofuels. Nature 447:914–915CrossRef
28.
go back to reference Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem 12:370–373CrossRef Mascal M, Nikitin EB (2010) High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chem 12:370–373CrossRef
29.
go back to reference Mascal M, Dutta S (2011) Synthesis of ranitidine (zantac) from cellulose-derived 5-(chloromethyl) furfural. Green Chem 13:3101–3102CrossRef Mascal M, Dutta S (2011) Synthesis of ranitidine (zantac) from cellulose-derived 5-(chloromethyl) furfural. Green Chem 13:3101–3102CrossRef
30.
go back to reference Mascal M, Dutta S (2011) Synthesis of the natural herbicide d-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41CrossRef Mascal M, Dutta S (2011) Synthesis of the natural herbicide d-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41CrossRef
31.
go back to reference Pinazo JM, Domine ME, Parvulescu V, Petruca F (2015) Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Cat Today 239:17–24CrossRef Pinazo JM, Domine ME, Parvulescu V, Petruca F (2015) Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Cat Today 239:17–24CrossRef
32.
go back to reference Juodeikienea G, Vidmantienea D, Basinskienea L, Cernauskasa D, Bartkieneb E, Cizeikienea D (2015) Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis. Cat Today 239:11–16. For other synthesis of lactic acid from biomass see for instance: Ramírez-López CA, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Torrecilla-Soria J (2011) Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol. J Chem Technol Biotechnol 86:867–874; Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4. doi:10.1038/ncomms3141 Juodeikienea G, Vidmantienea D, Basinskienea L, Cernauskasa D, Bartkieneb E, Cizeikienea D (2015) Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis. Cat Today 239:11–16. For other synthesis of lactic acid from biomass see for instance: Ramírez-López CA, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Torrecilla-Soria J (2011) Chemicals from biomass: synthesis of lactic acid by alkaline hydrothermal conversion of sorbitol. J Chem Technol Biotechnol 86:867–874; Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4. doi:10.​1038/​ncomms3141
33.
go back to reference Mueller S (2010) Life cycle analysis of ethyl lactate production and controlled flow cavitation at corn ethanol plants. PhD thesis, University of Illinois at Chicago Mueller S (2010) Life cycle analysis of ethyl lactate production and controlled flow cavitation at corn ethanol plants. PhD thesis, University of Illinois at Chicago
34.
go back to reference see for review Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014 see for review Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014
35.
go back to reference Matos CT, Gouveia L, Morais ARC, Reis A, Bogel-Łukasik R (2013) Green metrics evaluation of isoprene production by microalgae and bacteria. Green Chem 15:2854–2864; Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-Łukasik R Chemical and biological-based isoprene production: green metrics (2015) Cat Today 239:38–43 Matos CT, Gouveia L, Morais ARC, Reis A, Bogel-Łukasik R (2013) Green metrics evaluation of isoprene production by microalgae and bacteria. Green Chem 15:2854–2864; Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-Łukasik R Chemical and biological-based isoprene production: green metrics (2015) Cat Today 239:38–43
36.
go back to reference Sheldon R (2011) Reaction efficiencies and green chemistry metrics of biotransformations. In: Tao J, Kazlaukas R (eds) Biocatalysis for green chemistry and chemical process development. Wiley, Hoboken Sheldon R (2011) Reaction efficiencies and green chemistry metrics of biotransformations. In: Tao J, Kazlaukas R (eds) Biocatalysis for green chemistry and chemical process development. Wiley, Hoboken
Metadata
Title
Renewable Resources: From Refinery to Bio-refinery
Authors
Angelo Albini
Stefano Protti
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-25895-9_4

Premium Partners