Skip to main content
Top
Published in: Cellulose 6/2019

28-02-2019 | Original Research

Repeated batches as a feasible industrial process for hemicellulosic ethanol production from sugarcane bagasse by using immobilized yeast cells

Authors: F. A. F. Antunes, J. C. Santos, A. K. Chandel, D. J. Carrier, G. F. D. Peres, T. S. S. Milessi, S. S. da Silva

Published in: Cellulose | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, sugarcane bagasse (SB) is the most abundant agricultural residue generated in Brazil. Given that hemicelluloses can reach up to 30% of SB, bioconversion of this fraction into second generation ethanol (2G) is essential for the success of biorefinery based operations. For 2G ethanol production, techniques such as immobilization process could be an interesting strategy to improve process productivity and must receive special investigation. Cell immobilization of the native Brazilian pentose wild converting yeast, Scheffersomyces shehatae UFMG-HM 52.2, was proposed for the production of 2G ethanol from SB hemicellulosic hydrolysate. A 23 full experimental design was constructed with varying concentrations of sodium alginate (1.0, 1.5 and 2.0% w/v), and calcium chloride (0.1 M, 0.15 M and 0.2 M) and conditioning time (12, 18 and 24 h). Through statistical analysis, it was determined that highest ethanol yield (YP/S of 0.32 g/g) and productivity (QP of 0.146 g/L.h) were obtained with immobilization conditions of 1% sodium alginate, 0.2 M calcium chloride and 12 h of conditioning time. Repeated batches were conducted employing these defined conditions, showing the feasibility to use the system for 5 consecutive cycles. Results highlighted the use of proposed approach for ethanol production, promoting its inclusion in biorefinery operation portfolios.

Graphical abstract

Hemicellulosic hydrolysate from sugarcane bagasse: a large available carbon source; S. shehatae UFMG-HM 52.2 is a Brazilian wild native pentose fermenting yeast; Immobilization conditions for this yeast were defined for ethanol production; Stability in ethanol production was demonstrated in 5 repeated consecutive batches; Our approach was demonstrated feasible for industrial 2G ethanol process development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akin C (1987) Biocatalysis with immobilized cells. Biotechnol Genetic Eng Rev 5:319–367CrossRef Akin C (1987) Biocatalysis with immobilized cells. Biotechnol Genetic Eng Rev 5:319–367CrossRef
go back to reference Alves LA, Felipe MGA, Silva JBA, Silva SS, Prata AMR (1998) Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 70:89–98CrossRef Alves LA, Felipe MGA, Silva JBA, Silva SS, Prata AMR (1998) Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 70:89–98CrossRef
go back to reference Alvira P, Tomás-pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMed Alvira P, Tomás-pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMed
go back to reference Antunes FAF, Chandel AK, Santos JC; et al (2018) Bioethanol: An overview of production possibilities. In: Brienzo, M.. (Ed) Bioethanol and Beyond ¬ Andvances in Production Process and Future Directions. 1ed.NY - USA: Nova Science Publishers Antunes FAF, Chandel AK, Santos JC; et al (2018) Bioethanol: An overview of production possibilities. In: Brienzo, M.. (Ed) Bioethanol and Beyond ¬ Andvances in Production Process and Future Directions. 1ed.NY - USA: Nova Science Publishers
go back to reference Bangrak P, Savitree L, Phisalaphong M (2011) Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Braz J Microbiol 42:676–684CrossRefPubMedPubMedCentral Bangrak P, Savitree L, Phisalaphong M (2011) Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Braz J Microbiol 42:676–684CrossRefPubMedPubMedCentral
go back to reference Behera S, Kar S, Mohanty RC, Ray RC (2010) Comparative study of bio-ethanol production from (mahula (Madhula latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar and Ca alginate matrices. Appl Energy 87:96–100CrossRef Behera S, Kar S, Mohanty RC, Ray RC (2010) Comparative study of bio-ethanol production from (mahula (Madhula latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar and Ca alginate matrices. Appl Energy 87:96–100CrossRef
go back to reference Behera S, Mohanty RC, Ray RC (2012) Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrical L. sponge discs and Ca- alginate matrices. Braz J Microbiol 43:1499–1507CrossRefPubMedPubMedCentral Behera S, Mohanty RC, Ray RC (2012) Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrical L. sponge discs and Ca- alginate matrices. Braz J Microbiol 43:1499–1507CrossRefPubMedPubMedCentral
go back to reference Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRef Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRef
go back to reference Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, da Silva SS (2012) Review article : Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRef Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, da Silva SS (2012) Review article : Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRef
go back to reference Carvalho W, Silva SS, Vitolo M, Felipe MGA, Mancilha IM (2002) Improvement in xylitol production from sugarcane bagasse hydrolysate achieved by the use of a repeated-batch immobilized cell system. Z Naturforsch C 57:109–112CrossRefPubMed Carvalho W, Silva SS, Vitolo M, Felipe MGA, Mancilha IM (2002) Improvement in xylitol production from sugarcane bagasse hydrolysate achieved by the use of a repeated-batch immobilized cell system. Z Naturforsch C 57:109–112CrossRefPubMed
go back to reference Carvalho W, Silva SS, Santos JC, Converti A (2003) Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb Technol 32:553–559CrossRef Carvalho W, Silva SS, Santos JC, Converti A (2003) Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb Technol 32:553–559CrossRef
go back to reference Cerqueira-Leite RC, Leal MRLV, Cortez LAB, Griffin WM, Scandiffio MIG (2009) Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy 34:655–661CrossRef Cerqueira-Leite RC, Leal MRLV, Cortez LAB, Griffin WM, Scandiffio MIG (2009) Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy 34:655–661CrossRef
go back to reference Chandel AK, Antunes FAF, Anjos V, Bell MJB, Rodrigues LN, Singh OV, Rosa CA, Pagnocca FC, da Silva SS (2013) Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 6(4):1–15 Chandel AK, Antunes FAF, Anjos V, Bell MJB, Rodrigues LN, Singh OV, Rosa CA, Pagnocca FC, da Silva SS (2013) Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 6(4):1–15
go back to reference Chandel AK, Antunes FAF, Anjos V et al (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acidbasepretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechn Biofuels 7:63CrossRef Chandel AK, Antunes FAF, Anjos V et al (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acidbasepretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechn Biofuels 7:63CrossRef
go back to reference Chandel AK, Garlapatib VK, Singhc AK, Antunes FAF, da Silva SS (2018a) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Biores Technol 26:370–381CrossRef Chandel AK, Garlapatib VK, Singhc AK, Antunes FAF, da Silva SS (2018a) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Biores Technol 26:370–381CrossRef
go back to reference Chen KC, Huang CT (1998) Effects of the growth of T. cutaneum in calcium alginate gel beads upon bead structure and oxygen transfer characteristics. Enzyme Microb Technol 10:284–292CrossRef Chen KC, Huang CT (1998) Effects of the growth of T. cutaneum in calcium alginate gel beads upon bead structure and oxygen transfer characteristics. Enzyme Microb Technol 10:284–292CrossRef
go back to reference Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421CrossRef Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421CrossRef
go back to reference Freeman A, Lilly MD (1998) Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microb Technol 23:335–345CrossRef Freeman A, Lilly MD (1998) Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microb Technol 23:335–345CrossRef
go back to reference Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefPubMed Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefPubMed
go back to reference Ha SJ, Galazkac JM, Kima SR, Choia JH, Yang X, Seoe JHN, Glassf L, Catec JHD, Jina YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci (PNAS) 108:504–509CrossRef Ha SJ, Galazkac JM, Kima SR, Choia JH, Yang X, Seoe JHN, Glassf L, Catec JHD, Jina YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci (PNAS) 108:504–509CrossRef
go back to reference Hahn-hägerdal B, Jeppsson H, Skoog K, Prior B (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microbiol Technol 16:933–942CrossRef Hahn-hägerdal B, Jeppsson H, Skoog K, Prior B (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microbiol Technol 16:933–942CrossRef
go back to reference Harmsen PFH, Huijgen WJJ, Bermúdez Lopez LM, Bakke RC (2012) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food and Biomass Res Wageningen UR 1:1–49 Harmsen PFH, Huijgen WJJ, Bermúdez Lopez LM, Bakke RC (2012) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food and Biomass Res Wageningen UR 1:1–49
go back to reference Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3:289–299 Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3:289–299
go back to reference Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotechnol 27:1–32PubMed Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotechnol 27:1–32PubMed
go back to reference Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: a perspective. Int Sugar J 1263:147–150 Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: a perspective. Int Sugar J 1263:147–150
go back to reference Ksungur YG, Zorlu N (2001) Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed-bed bioreactor. Turkish J Biol 25:265–275 Ksungur YG, Zorlu N (2001) Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed-bed bioreactor. Turkish J Biol 25:265–275
go back to reference Meena K, Raja TK (2006) Immobilization of Saccharomyces cerevisiae cells by gel entrapment using various metal alginates. World J Microbiol Biotechnol 22:651–653CrossRef Meena K, Raja TK (2006) Immobilization of Saccharomyces cerevisiae cells by gel entrapment using various metal alginates. World J Microbiol Biotechnol 22:651–653CrossRef
go back to reference Nelder JA (1998) The selection of terms in response surface models—how strong is the weak heredity principle. Am Stat 52:16 Nelder JA (1998) The selection of terms in response surface models—how strong is the weak heredity principle. Am Stat 52:16
go back to reference Nigam JN (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cell. J Biotechnol 80:189–193CrossRefPubMed Nigam JN (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cell. J Biotechnol 80:189–193CrossRefPubMed
go back to reference Ogbonna JC, Amano Y, Nakamura KJ (1989) Elucidation of optimum conditions for immobilization of viable cells by using calcium alginate. J Ferment Bioeng 67:92–96CrossRef Ogbonna JC, Amano Y, Nakamura KJ (1989) Elucidation of optimum conditions for immobilization of viable cells by using calcium alginate. J Ferment Bioeng 67:92–96CrossRef
go back to reference Omar SH (1993) Oxygen diffusion through gels employed for immobilization. 2—In the presence of microorganisms. Appli Microbiol Biotechnol 40:173–181 Omar SH (1993) Oxygen diffusion through gels employed for immobilization. 2—In the presence of microorganisms. Appli Microbiol Biotechnol 40:173–181
go back to reference Parajó JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201CrossRef Parajó JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201CrossRef
go back to reference Parekh SR, Yu S, Wayman M (1986) Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysates for increased ethanol production. Appl Microbiol Biotechnol 25:300–304CrossRef Parekh SR, Yu S, Wayman M (1986) Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysates for increased ethanol production. Appl Microbiol Biotechnol 25:300–304CrossRef
go back to reference Peart PC, Chen ARM, Reynolds WR, Reese PB (2012) Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids 77:85–90CrossRefPubMed Peart PC, Chen ARM, Reynolds WR, Reese PB (2012) Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids 77:85–90CrossRefPubMed
go back to reference Perez-Bibbins B, Torrado-Agrasar A, Salgado JM, Mussato SI, Dominguez JM (2015) Xylitol production in immobilized cultures: a recent review. Crit Rev Biotechnol 10:1–14CrossRef Perez-Bibbins B, Torrado-Agrasar A, Salgado JM, Mussato SI, Dominguez JM (2015) Xylitol production in immobilized cultures: a recent review. Crit Rev Biotechnol 10:1–14CrossRef
go back to reference Rowell RM, Pettersen R, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74 Rowell RM, Pettersen R, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74
go back to reference Sanda T, Hasunuma T, Matsuda F, Kondo A (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Biores Technol 102:7917–7924CrossRef Sanda T, Hasunuma T, Matsuda F, Kondo A (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Biores Technol 102:7917–7924CrossRef
go back to reference Santos JC, Silva SS, Mussatto SI, Carvalho W, Cunha MA (2005) Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. World J Microbiol Biotechnol 21:531–535CrossRef Santos JC, Silva SS, Mussatto SI, Carvalho W, Cunha MA (2005) Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. World J Microbiol Biotechnol 21:531–535CrossRef
go back to reference Sarrouh BF, Silva SS (2013) Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Appl Biochem Biotechnol 169:3–12CrossRef Sarrouh BF, Silva SS (2013) Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Appl Biochem Biotechnol 169:3–12CrossRef
go back to reference Sarrouh BF, Tresinari DS, Silva SS (2007) Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnol J 2:759–763CrossRef Sarrouh BF, Tresinari DS, Silva SS (2007) Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnol J 2:759–763CrossRef
go back to reference Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR (2013) Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renewable Energy 50:488–493CrossRef Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR (2013) Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renewable Energy 50:488–493CrossRef
go back to reference Wang Y, Tan L, Wang T, Sun Z, Tang Y, Kida K (2017) Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7. Environ Technol 38:316–325CrossRefPubMed Wang Y, Tan L, Wang T, Sun Z, Tang Y, Kida K (2017) Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7. Environ Technol 38:316–325CrossRefPubMed
go back to reference Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRef Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRef
go back to reference Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32CrossRef Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32CrossRef
Metadata
Title
Repeated batches as a feasible industrial process for hemicellulosic ethanol production from sugarcane bagasse by using immobilized yeast cells
Authors
F. A. F. Antunes
J. C. Santos
A. K. Chandel
D. J. Carrier
G. F. D. Peres
T. S. S. Milessi
S. S. da Silva
Publication date
28-02-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02341-z

Other articles of this Issue 6/2019

Cellulose 6/2019 Go to the issue