Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

repro_eval: A Python Interface to Reproducibility Measures of System-Oriented IR Experiments

Authors : Timo Breuer, Nicola Ferro, Maria Maistro, Philipp Schaer

Published in: Advances in Information Retrieval

Publisher: Springer International Publishing

Abstract

In this work we introduce repro_eval - a tool for reactive reproducibility studies of system-oriented Information Retrieval (IR) experiments. The corresponding Python package provides IR researchers with measures for different levels of reproduction when evaluating their systems’ outputs. By offering an easily extensible interface, we hope to stimulate common practices when conducting a reproducibility study of system-oriented IR experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agosti, Maristella, Di Nunzio, Giorgio Maria, Ferro, Nicola, Silvello, Gianmaria: An innovative approach to data management and curation of experimental data generated through IR test collections. In: Ferro, N., Peters, C. (eds.) Information Retrieval Evaluation in a Changing World. TIRS, vol. 41, pp. 105–122. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-22948-1_​4 CrossRef Agosti, Maristella, Di Nunzio, Giorgio Maria, Ferro, Nicola, Silvello, Gianmaria: An innovative approach to data management and curation of experimental data generated through IR test collections. In: Ferro, N., Peters, C. (eds.) Information Retrieval Evaluation in a Changing World. TIRS, vol. 41, pp. 105–122. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-22948-1_​4 CrossRef
2.
go back to reference Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016) CrossRef Baker, M.: 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016) CrossRef
3.
go back to reference Breuer, T., et al.: How to measure the reproducibility of system-oriented IR experiments. In: Huang, J., et al. (eds.) Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, Virtual Event, China, 25–30 July 2020, pp. 349–358. ACM (2020). https://​doi.​org/​10.​1145/​3397271.​3401036 Breuer, T., et al.: How to measure the reproducibility of system-oriented IR experiments. In: Huang, J., et al. (eds.) Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, Virtual Event, China, 25–30 July 2020, pp. 349–358. ACM (2020). https://​doi.​org/​10.​1145/​3397271.​3401036
4.
go back to reference Chirigati, F., Rampin, R., Shasha, D.E., Freire, J.: Reprozip: computational reproducibility with ease. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 2085–2088. ACM (2016). https://​doi.​org/​10.​1145/​2882903.​2899401 Chirigati, F., Rampin, R., Shasha, D.E., Freire, J.: Reprozip: computational reproducibility with ease. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 International Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 2085–2088. ACM (2016). https://​doi.​org/​10.​1145/​2882903.​2899401
5.
go back to reference Clancy, R., Ferro, N., Hauff, C., Lin, J., Sakai, T., Wu, Z.Z.: The SIGIR 2019 open-source IR replicability challenge (OSIRRC 2019). In: Piwowarski, B., Chevalier, M., Gaussier, É., Maarek, Y., Nie, J., Scholer, F. (eds.) Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, 21–25 July 2019, pp. 1432–1434. ACM (2019). https://​doi.​org/​10.​1145/​3331184.​3331647 Clancy, R., Ferro, N., Hauff, C., Lin, J., Sakai, T., Wu, Z.Z.: The SIGIR 2019 open-source IR replicability challenge (OSIRRC 2019). In: Piwowarski, B., Chevalier, M., Gaussier, É., Maarek, Y., Nie, J., Scholer, F. (eds.) Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, 21–25 July 2019, pp. 1432–1434. ACM (2019). https://​doi.​org/​10.​1145/​3331184.​3331647
7.
go back to reference Gysel, C.V., de Rijke, M.: Pytrec \(\_\)eval: an extremely fast python interface to trec \(\_\)eval. In: Collins-Thompson, K., Mei, Q., Davison, B.D., Liu, Y., Yilmaz, E. (eds.) The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, 08–12 July 2018, pp. 873–876. ACM (2018). https://​doi.​org/​10.​1145/​3209978.​3210065 Gysel, C.V., de Rijke, M.: Pytrec \(\_\)eval: an extremely fast python interface to trec \(\_\)eval. In: Collins-Thompson, K., Mei, Q., Davison, B.D., Liu, Y., Yilmaz, E. (eds.) The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, 08–12 July 2018, pp. 873–876. ACM (2018). https://​doi.​org/​10.​1145/​3209978.​3210065
13.
go back to reference Rauber, A., Miksa, T., Mayer, R., Pröll, S.: Repeatability and re-usability in scientific processes: process context, data identification and verification. In: Kalinichenko, L.A., Starkov, S. (eds.) Selected Papers of the XVII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2015), Obninsk, Russia, 13–16 October 2015. CEUR Workshop Proceedings, vol. 1536, pp. 246–256. CEUR-WS.org (2015). http://​ceur-ws.​org/​Vol-1536/​paper33.​pdf Rauber, A., Miksa, T., Mayer, R., Pröll, S.: Repeatability and re-usability in scientific processes: process context, data identification and verification. In: Kalinichenko, L.A., Starkov, S. (eds.) Selected Papers of the XVII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2015), Obninsk, Russia, 13–16 October 2015. CEUR Workshop Proceedings, vol. 1536, pp. 246–256. CEUR-WS.org (2015). http://​ceur-ws.​org/​Vol-1536/​paper33.​pdf
Metadata
Title
repro_eval: A Python Interface to Reproducibility Measures of System-Oriented IR Experiments
Authors
Timo Breuer
Nicola Ferro
Maria Maistro
Philipp Schaer
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-72240-1_51