Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2021

03-01-2021 | Research Article-Mechanical Engineering

Reproducibility of Replicated Trabecular Bone Structures from Ti6Al4V Extralow Interstitials Powder by Selective Laser Melting

Authors: Arif Balcı, Furkan Küçükaltun, M. Fatih Aycan, Yusuf Usta, Teyfik Demir

Published in: Arabian Journal for Science and Engineering | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The field of orthopedic regenerative medical studies has begun to use porous metal structures for biomedical implants, which have lower strength and ingrowth behavior, similar to bones. It is possible to produce such porous metal structures with a designable microarchitecture or replicated topology by additive manufacturing. The main purpose of using these artificial pore geometries in the biomedical field is to increase the biocompatibility of the product by imitating the bone. In this study, bone samples from the femoral and vertebral regions of a sheep were obtained and scanned by microfocus computed tomography (Micro-CT). Trabecular bone models were produced from Ti6Al4V extralow interstitials powder using the selective laser melting with 1:1, 1:1.25, and 1:1.50 scales. The produced samples were scanned using Micro-CT, and 3D models were formed. The 3D models of the trabecular bone and samples were aligned in a computer environment to determine deviations in both size and angle of arms in the trabecular structure. It was found that the deviations decreased when the angle was above 60°, whereas they significantly increased with the size below 150 microns. The size distribution and interconnectivity ratio of the pores formed in the production was obtained from the PNMs. It was determined that the mean equivalent diameters of vertebra and femoral pores, from the pore network models are 767 ± 265 µm and 623 ± 245 µm, and concluded that the samples produced in the scale of 1: 1 and 1: 1.25 could represent the pore size distribution in the bone.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hing, K.A.; Best, S.M.; Bonfield, W.: Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 10(3), 135–145, 1999CrossRef Hing, K.A.; Best, S.M.; Bonfield, W.: Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 10(3), 135–145, 1999CrossRef
2.
go back to reference Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P.: The 3D printing of gelatinmethacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35(1), 49–62, 2014CrossRef Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P.: The 3D printing of gelatinmethacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35(1), 49–62, 2014CrossRef
3.
go back to reference Mooney, D.J.; Sano, K.; Matthias Kaufmann, P.; Majahod, K.; Schloo, B.; Vacanti, J.P.; et al.: Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res. 37(3), 413–420, 1997CrossRef Mooney, D.J.; Sano, K.; Matthias Kaufmann, P.; Majahod, K.; Schloo, B.; Vacanti, J.P.; et al.: Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res. 37(3), 413–420, 1997CrossRef
4.
go back to reference Hurtado, A.; Moon, L.D.F.; Maquet, V.; Blits, B.; Jérôme, R.; Oudega, M.: Poly (d,l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27(3), 430–442, 2006CrossRef Hurtado, A.; Moon, L.D.F.; Maquet, V.; Blits, B.; Jérôme, R.; Oudega, M.: Poly (d,l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials 27(3), 430–442, 2006CrossRef
5.
go back to reference Jones, A.C.; Arns, C.H.; Hutmacher, D.W.; Milthorpe, B.K.; Sheppard, A.P.; Knackstedt, M.A.: The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30(7), 1440–1451, 2009CrossRef Jones, A.C.; Arns, C.H.; Hutmacher, D.W.; Milthorpe, B.K.; Sheppard, A.P.; Knackstedt, M.A.: The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30(7), 1440–1451, 2009CrossRef
6.
go back to reference Currey, J.D.: Bones: structure and mechanics, pp. 5–456. Princeton University Press, Princeton (2006) Currey, J.D.: Bones: structure and mechanics, pp. 5–456. Princeton University Press, Princeton (2006)
7.
go back to reference Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504, 2013CrossRef Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504, 2013CrossRef
8.
go back to reference Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; et al.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141, 2016CrossRef Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; et al.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141, 2016CrossRef
9.
go back to reference Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543, 2000CrossRef Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543, 2000CrossRef
10.
go back to reference Ponader, S.; von Wilmowsky, C.; Widenmayer, M.; Lutz, R.; Heinl, P.; Körner, C.; et al.: In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J. Biomed. Mater. Res. Part A 92(1), 56–62, 2010CrossRef Ponader, S.; von Wilmowsky, C.; Widenmayer, M.; Lutz, R.; Heinl, P.; Körner, C.; et al.: In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J. Biomed. Mater. Res. Part A 92(1), 56–62, 2010CrossRef
11.
go back to reference Palmquist, A.; Emanuelsson, L.; Thomsen, P.; Palmquist, A.; Snis, A.; Emanuelsson, L.; et al.: Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. J. Biomater. Appl. 27(8), 1003–1016, 2013CrossRef Palmquist, A.; Emanuelsson, L.; Thomsen, P.; Palmquist, A.; Snis, A.; Emanuelsson, L.; et al.: Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. J. Biomater. Appl. 27(8), 1003–1016, 2013CrossRef
12.
go back to reference Murr, L.E.: Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164–177, 2017CrossRef Murr, L.E.: Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164–177, 2017CrossRef
13.
go back to reference Li, X.; Chu, C.; Zhou, L.; Bai, J.; Guo, C.; Xue, F.; et al.: Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos. Sci. Technol. 142, 180–188, 2017CrossRef Li, X.; Chu, C.; Zhou, L.; Bai, J.; Guo, C.; Xue, F.; et al.: Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos. Sci. Technol. 142, 180–188, 2017CrossRef
14.
go back to reference Al-Tamimi, A.A.; Peach, C.; Fernandes, P.R.; Cseke, A.; Bartolo, P.J.D.S.: Topology optimization to reduce the stress shielding effect for orthopedic applications. Procedia CIRP 65, 202–206, 2017CrossRef Al-Tamimi, A.A.; Peach, C.; Fernandes, P.R.; Cseke, A.; Bartolo, P.J.D.S.: Topology optimization to reduce the stress shielding effect for orthopedic applications. Procedia CIRP 65, 202–206, 2017CrossRef
15.
go back to reference Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y.: Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C 76, 1328–1343, 2017CrossRef Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y.: Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C 76, 1328–1343, 2017CrossRef
16.
go back to reference Zaharin, H.A.; Abdul Rani, A.M.; Azam, F.I.; Ginta, T.L.; Sallih, N.; Ahmad, A.; et al.: Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds. Materials 11(12), 2402, 2018CrossRef Zaharin, H.A.; Abdul Rani, A.M.; Azam, F.I.; Ginta, T.L.; Sallih, N.; Ahmad, A.; et al.: Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds. Materials 11(12), 2402, 2018CrossRef
17.
go back to reference Wang, Y.; Arabnejad, S.; Tanzer, M.; Pasini, D.: Hip implant design with three-dimensional porous architecture of optimized graded density. J. Mech. Des. 140(11), 111406, 2018CrossRef Wang, Y.; Arabnejad, S.; Tanzer, M.; Pasini, D.: Hip implant design with three-dimensional porous architecture of optimized graded density. J. Mech. Des. 140(11), 111406, 2018CrossRef
18.
go back to reference Itälä, A.I.; Ylänen, H.O.; Ekholm, C.; Karlsson, K.H.; Aro, H.T.: Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 58(6), 679–683, 2001 Itälä, A.I.; Ylänen, H.O.; Ekholm, C.; Karlsson, K.H.; Aro, H.T.: Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 58(6), 679–683, 2001
19.
go back to reference Kuboki, Y.; Jin, Q.; Takita, H.: Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. JBJS 83(1), 105–115, 2001 Kuboki, Y.; Jin, Q.; Takita, H.: Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. JBJS 83(1), 105–115, 2001
21.
go back to reference Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y.: Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121(2), 317–324, 1997CrossRef Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y.: Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121(2), 317–324, 1997CrossRef
22.
go back to reference de Wild, M.; Zimmermann, S.; Rüegg, J.; Schumacher, R.; Fleischmann, T.; Ghayor, C.; et al.: Influence of microarchitecture on osteoconduction and mechanics of porous titanium scaffolds generated by selective laser melting. 3D Print. Addit. Manuf. 3(3), 142–151, 2016CrossRef de Wild, M.; Zimmermann, S.; Rüegg, J.; Schumacher, R.; Fleischmann, T.; Ghayor, C.; et al.: Influence of microarchitecture on osteoconduction and mechanics of porous titanium scaffolds generated by selective laser melting. 3D Print. Addit. Manuf. 3(3), 142–151, 2016CrossRef
23.
go back to reference Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A.: Vascularization in tissue engineering. Trends Biotechnol. 26(8), 434–441, 2008CrossRef Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A.: Vascularization in tissue engineering. Trends Biotechnol. 26(8), 434–441, 2008CrossRef
24.
go back to reference Kumar, A.; Nune, K.C.; Murr, L.E.; Misra, R.D.K.: Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20–45, 2016CrossRef Kumar, A.; Nune, K.C.; Murr, L.E.; Misra, R.D.K.: Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20–45, 2016CrossRef
25.
go back to reference Eli, T.: Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted. J. Mech. Behav. Biomed. Mater. 43, 91–100, 2015CrossRef Eli, T.: Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted. J. Mech. Behav. Biomed. Mater. 43, 91–100, 2015CrossRef
26.
go back to reference Ahmadi, S.M.; Yavari, S.A.; Wauthle, R.; Pouran, B.; Schrooten, J.; Weinans, H.; Zadpoor, A.A.: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties. Materials 8(4), 1871–1896, 2015CrossRef Ahmadi, S.M.; Yavari, S.A.; Wauthle, R.; Pouran, B.; Schrooten, J.; Weinans, H.; Zadpoor, A.A.: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties. Materials 8(4), 1871–1896, 2015CrossRef
27.
go back to reference Wieding, J.; Wolf, A.; Bader, R.: Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J. Mech. Behav. Biomed. Mater. 37, 56–68, 2014CrossRef Wieding, J.; Wolf, A.; Bader, R.: Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J. Mech. Behav. Biomed. Mater. 37, 56–68, 2014CrossRef
28.
go back to reference Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3(3), 249–259, 2010CrossRef Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3(3), 249–259, 2010CrossRef
29.
go back to reference Wauthle, R.; Van Der Stok, J.; Yavari, S.A.; Van Humbeeck, J.; Kruth, J.P.; Zadpoor, A.A.; et al.: Additively manufactured porous tantalum implants. ActaBiomater. 14, 217–225, 2015 Wauthle, R.; Van Der Stok, J.; Yavari, S.A.; Van Humbeeck, J.; Kruth, J.P.; Zadpoor, A.A.; et al.: Additively manufactured porous tantalum implants. ActaBiomater. 14, 217–225, 2015
30.
go back to reference Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Anaraki, A.P.; Ahmadi, S.M.; Zadpoor, A.A.; et al.: Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 50, 180–191, 2015CrossRef Kadkhodapour, J.; Montazerian, H.; Darabi, A.C.; Anaraki, A.P.; Ahmadi, S.M.; Zadpoor, A.A.; et al.: Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J. Mech. Behav. Biomed. Mater. 50, 180–191, 2015CrossRef
31.
go back to reference Wauthle, R.; Vrancken, B.; Beynaerts, B.; Jorissen, K.; Schrooten, J.; Kruth, J.P.; et al.: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 5, 77–84, 2015 Wauthle, R.; Vrancken, B.; Beynaerts, B.; Jorissen, K.; Schrooten, J.; Kruth, J.P.; et al.: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 5, 77–84, 2015
32.
go back to reference Arabnejad, S.; Burnett Johnston, R.; Pura, J.A.; Singh, B.; Tanzer, M.; Pasini, D.: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. ActaBiomater. 30, 345–356, 2016 Arabnejad, S.; Burnett Johnston, R.; Pura, J.A.; Singh, B.; Tanzer, M.; Pasini, D.: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. ActaBiomater. 30, 345–356, 2016
33.
go back to reference Fantini, M.; Curto, M.; De Crescenzio, F.: A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual Phys. Prototyp. 11(2), 77–90, 2016CrossRef Fantini, M.; Curto, M.; De Crescenzio, F.: A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual Phys. Prototyp. 11(2), 77–90, 2016CrossRef
34.
go back to reference Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; et al.: Trabecular-like Ti–6Al–4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J. Mater. Sci. Technol. 35(7), 1284–1297, 2019CrossRef Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; et al.: Trabecular-like Ti–6Al–4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J. Mater. Sci. Technol. 35(7), 1284–1297, 2019CrossRef
35.
go back to reference Barak, M.M.; Black, M.A.: A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J. Mech. Behav. Biomed. Mater. 78, 455–464, 2018CrossRef Barak, M.M.; Black, M.A.: A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J. Mech. Behav. Biomed. Mater. 78, 455–464, 2018CrossRef
36.
go back to reference Wood, Z.; Lynn, L.; Nguyen, J.T.; Black, M.A.; Patel, M.; Barak, M.M.: Are we crying Wolff? 3D printed replicas of trabecular bone structure demonstrate higher stiffness and strength during off-axis loading. Bone 127, 635–645, 2019CrossRef Wood, Z.; Lynn, L.; Nguyen, J.T.; Black, M.A.; Patel, M.; Barak, M.M.: Are we crying Wolff? 3D printed replicas of trabecular bone structure demonstrate higher stiffness and strength during off-axis loading. Bone 127, 635–645, 2019CrossRef
37.
go back to reference Cheng, A.; Humayun, A.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z.: Additively manufactured 3D porous Ti–6Al–4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6(4), 1–12, 2014CrossRef Cheng, A.; Humayun, A.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z.: Additively manufactured 3D porous Ti–6Al–4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6(4), 1–12, 2014CrossRef
38.
go back to reference Shipley, H.; McDonnell, D.; Culleton, M.; Coull, R.; Lupoi, R.; O’Donnell, G.; et al.: Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti–6Al–4V: a review. Int. J. Mach. Tools Manuf. 128, 1–20, 2018CrossRef Shipley, H.; McDonnell, D.; Culleton, M.; Coull, R.; Lupoi, R.; O’Donnell, G.; et al.: Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti–6Al–4V: a review. Int. J. Mach. Tools Manuf. 128, 1–20, 2018CrossRef
39.
go back to reference Attar, H.; Calin, M.; Zhang, L.C.C.; Scudino, S.; Eckert, J.: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 593, 170–177, 2014CrossRef Attar, H.; Calin, M.; Zhang, L.C.C.; Scudino, S.; Eckert, J.: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A 593, 170–177, 2014CrossRef
40.
go back to reference Liu, L.; Kamm, P.; García-Moreno, F.; Banhart, J.; Pasini, D.: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184, 2017MathSciNetCrossRef Liu, L.; Kamm, P.; García-Moreno, F.; Banhart, J.; Pasini, D.: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184, 2017MathSciNetCrossRef
41.
go back to reference Bagheri, Z.S.; Melancon, D.; Liu, L.; Johnston, R.B.; Pasini, D.: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with selective laser melting. J. Mech. Behav. Biomed. Mater. 70, 17–27, 2017CrossRef Bagheri, Z.S.; Melancon, D.; Liu, L.; Johnston, R.B.; Pasini, D.: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with selective laser melting. J. Mech. Behav. Biomed. Mater. 70, 17–27, 2017CrossRef
42.
go back to reference Bael, S.V.; Kerckhofs, G.; Moesen, M.; Pyka, G.; Schrooten, J.; Kruth, J.P.: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng. A 528(24), 7423–7431, 2011CrossRef Bael, S.V.; Kerckhofs, G.; Moesen, M.; Pyka, G.; Schrooten, J.; Kruth, J.P.: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng. A 528(24), 7423–7431, 2011CrossRef
43.
go back to reference Mazur, M.; Leary, M.; McMillan, M.; Sun, S.; Shidid, D.; Brandt, M.: Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). In: Brandt, M. (ed.) Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Chap. 5, pp. 119–161, 1st edn. Elsevier Science & Technology (2016). https://doi.org/10.1016/B978-0-08-100433-3.00005-1 Mazur, M.; Leary, M.; McMillan, M.; Sun, S.; Shidid, D.; Brandt, M.: Mechanical properties of Ti6Al4V and AlSi12Mg lattice structures manufactured by selective laser melting (SLM). In: Brandt, M. (ed.) Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Chap. 5, pp. 119–161, 1st edn. Elsevier Science & Technology (2016). https://​doi.​org/​10.​1016/​B978-0-08-100433-3.​00005-1
44.
go back to reference Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Meng, G.; Batista, R.J.S.; Wissenbach, K.; et al.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60(9), 3849–3860, 2012CrossRef Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Meng, G.; Batista, R.J.S.; Wissenbach, K.; et al.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60(9), 3849–3860, 2012CrossRef
45.
go back to reference Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.A.A.; et al.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307, 2013CrossRef Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.A.A.; et al.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307, 2013CrossRef
46.
go back to reference Murr, L.E.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Rodela, A.; Martinez, E.Y.; et al.: Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2(1), 20–32, 2009CrossRef Murr, L.E.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Rodela, A.; Martinez, E.Y.; et al.: Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2(1), 20–32, 2009CrossRef
47.
go back to reference Murr, L.E.; Esquivel, E.V.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; et al.: Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 60(2), 96–105, 2009CrossRef Murr, L.E.; Esquivel, E.V.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; et al.: Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 60(2), 96–105, 2009CrossRef
48.
go back to reference Vilaro, T.; Colin, C.; Bartout, J.D.: As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting. Metall. Mater. Trans. A 42(10), 3190–3199, 2011CrossRef Vilaro, T.; Colin, C.; Bartout, J.D.: As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting. Metall. Mater. Trans. A 42(10), 3190–3199, 2011CrossRef
49.
go back to reference Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.-P.P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312, 2010CrossRef Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.-P.P.: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312, 2010CrossRef
50.
go back to reference Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.-C.; Scudino, S.; Eckert, J.: Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 76, 13–22, 2014CrossRef Attar, H.; Bönisch, M.; Calin, M.; Zhang, L.-C.; Scudino, S.; Eckert, J.: Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 76, 13–22, 2014CrossRef
51.
go back to reference Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170, 2016CrossRef Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170, 2016CrossRef
52.
go back to reference Tobergte, D.R.; Curtis, S.: Defect morphology in Ti–6AL–4V parts fabricated by selective laser melting and electron beam melting. J. Chem. Inf. Model. 53(9), 1689–1699, 2013 Tobergte, D.R.; Curtis, S.: Defect morphology in Ti–6AL–4V parts fabricated by selective laser melting and electron beam melting. J. Chem. Inf. Model. 53(9), 1689–1699, 2013
53.
go back to reference Pang, S.; Chen, W.; Wang, W.: A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy. Metall. Mater. Trans. A 45(6), 2808–2818, 2014CrossRef Pang, S.; Chen, W.; Wang, W.: A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy. Metall. Mater. Trans. A 45(6), 2808–2818, 2014CrossRef
54.
go back to reference Yang, J.; Han, J.; Yu, H.; Yin, J.; Gao, M.; Wang, Z.; et al.: Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy. Mater. Des. 110, 558–570, 2016CrossRef Yang, J.; Han, J.; Yu, H.; Yin, J.; Gao, M.; Wang, Z.; et al.: Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy. Mater. Des. 110, 558–570, 2016CrossRef
55.
go back to reference Courtois, M.; Carin, M.; Masson, P.L.; Gaied, S.; Balabane, M.: A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J. Phys. D Appl. Phys. 46(50), 505305, 2013CrossRef Courtois, M.; Carin, M.; Masson, P.L.; Gaied, S.; Balabane, M.: A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J. Phys. D Appl. Phys. 46(50), 505305, 2013CrossRef
56.
go back to reference Qiu, C.; Adkins, N.J.E.E.; Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng. A 578, 230–239, 2013CrossRef Qiu, C.; Adkins, N.J.E.E.; Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng. A 578, 230–239, 2013CrossRef
57.
go back to reference Stef, J.; Poulon-Quintin, A.; Redjaimia, A.; Ghanbaja, J.; Ferry, O.; De Sousa, M.; et al.: Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti–6Al–4V parts. Mater. Des. 156, 480–493, 2018CrossRef Stef, J.; Poulon-Quintin, A.; Redjaimia, A.; Ghanbaja, J.; Ferry, O.; De Sousa, M.; et al.: Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti–6Al–4V parts. Mater. Des. 156, 480–493, 2018CrossRef
58.
go back to reference Voisin, T.; Calta, N.P.; Khairallah, S.A.; Forien, J.B.; Balogh, L.; Cunningham, R.W.; et al.: Defects-dictated tensile properties of selective laser melted Ti–6Al–4V. Mater. Des. 158, 113–126, 2018CrossRef Voisin, T.; Calta, N.P.; Khairallah, S.A.; Forien, J.B.; Balogh, L.; Cunningham, R.W.; et al.: Defects-dictated tensile properties of selective laser melted Ti–6Al–4V. Mater. Des. 158, 113–126, 2018CrossRef
59.
go back to reference Küçükaltun, F.: Production of replicated trabecular bone structure by selective laser melting method using Ti6Al4V powder and observation of geometric accuracy, Master thesis, Gazi University, Ankara (2019) Küçükaltun, F.: Production of replicated trabecular bone structure by selective laser melting method using Ti6Al4V powder and observation of geometric accuracy, Master thesis, Gazi University, Ankara (2019)
60.
go back to reference George, D.; Mallery, M.: SPSS for Windows Step by Step: A Simple Guide and Reference, pp. 112–120. Allyn & Bacon, Boston (2010) George, D.; Mallery, M.: SPSS for Windows Step by Step: A Simple Guide and Reference, pp. 112–120. Allyn & Bacon, Boston (2010)
61.
go back to reference Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B.: Using Multivariate Statistics, pp. 99–167. Pearson, Boston (2007) Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B.: Using Multivariate Statistics, pp. 99–167. Pearson, Boston (2007)
62.
go back to reference N Taniguchi S Fujibayashi M Takemoto K Sasaki B Otsuki T Nakamura 2016 Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment Mater. Sci. Eng. C 59:690 701CrossRef N Taniguchi S Fujibayashi M Takemoto K Sasaki B Otsuki T Nakamura 2016 Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment Mater. Sci. Eng. C 59:690 701CrossRef
63.
go back to reference Van Bael, S.; Chai, Y.C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; et al.: The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. ActaBiomater. 8(7), 2824–2834, 2012 Van Bael, S.; Chai, Y.C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; et al.: The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. ActaBiomater. 8(7), 2824–2834, 2012
64.
go back to reference von Doernberg, M.-C.; von Rechenberg, B.; Bohner, M.; Grünenfelder, S.; van Lenthe, G.H.; Müller, R.; et al.: In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27(30), 5186–5198, 2006CrossRef von Doernberg, M.-C.; von Rechenberg, B.; Bohner, M.; Grünenfelder, S.; van Lenthe, G.H.; Müller, R.; et al.: In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27(30), 5186–5198, 2006CrossRef
65.
go back to reference Geiger, M.; Leitz, K.H.; Koch, H.; Otto, A.: A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod. Eng. Res. Dev. 3(2), 127–136, 2009CrossRef Geiger, M.; Leitz, K.H.; Koch, H.; Otto, A.: A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod. Eng. Res. Dev. 3(2), 127–136, 2009CrossRef
66.
go back to reference Gong, H.; Rafi, K.; Gu, H.; Janaki Ram, G.D.D.; Starr, T.; Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554, 2015CrossRef Gong, H.; Rafi, K.; Gu, H.; Janaki Ram, G.D.D.; Starr, T.; Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554, 2015CrossRef
67.
go back to reference Pang, S.; Chen, X.; Zhou, J.; Shao, X.; Wang, C.: 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt. Lasers Eng. 74, 47–58, 2015CrossRef Pang, S.; Chen, X.; Zhou, J.; Shao, X.; Wang, C.: 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt. Lasers Eng. 74, 47–58, 2015CrossRef
68.
go back to reference Qiu, C.; Panwisawas, C.; Ward, M.; Basoalto, H.C.; Brooks, J.W.; Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79, 2015CrossRef Qiu, C.; Panwisawas, C.; Ward, M.; Basoalto, H.C.; Brooks, J.W.; Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79, 2015CrossRef
69.
go back to reference Liu, Y.J.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. J. Mech. Behav. Biomed. Mater. 60(4), 65–83, 2016 Liu, Y.J.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. J. Mech. Behav. Biomed. Mater. 60(4), 65–83, 2016
Metadata
Title
Reproducibility of Replicated Trabecular Bone Structures from Ti6Al4V Extralow Interstitials Powder by Selective Laser Melting
Authors
Arif Balcı
Furkan Küçükaltun
M. Fatih Aycan
Yusuf Usta
Teyfik Demir
Publication date
03-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05145-7

Other articles of this Issue 3/2021

Arabian Journal for Science and Engineering 3/2021 Go to the issue

Premium Partners