Skip to main content
Top

2025 | OriginalPaper | Chapter

Research on Method of Flexible Mold Surface Formation Based on Point Cloud and Neural Network

Authors : Rongjian Li, Jiannan Zhang, Jianhui Zhang, Zhongyou Wang, Xiangdong Guo

Published in: World Conference of AI-Powered Innovation and Inventive Design

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the innovative method of flexible mold surface formation using point cloud and neural network technology. It begins with a review of flexible mold technology and its significance in the manufacturing industry. The study focuses on specialized flexible molds for additive manufacturing of large-scale curved products, utilizing multi-point forming to discretize basic forming units. The research employs TRIZ theory for local idealization and technical contradiction resolution to design a neural network model tailored for surface formation. Key modules like lower edge point screening and filtering are integrated to enhance data precision and accuracy. The improved PointNet++ network, with enhanced sampling methods, is employed to process raw point cloud data, extracting crucial features for surface formation. Experimental results demonstrate the effectiveness of the proposed method, achieving high accuracy in surface formation point determination. This work provides a theoretical foundation and practical guidance for the design of flexible molds in advanced manufacturing processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Y.J., Liu, R., Wu, W.C.: The key technology and development status and trend of flexible die for sheet metal and profile forming. Aeronautical Manufact. Technol. 13, 42–46 (2011) Wang, Y.J., Liu, R., Wu, W.C.: The key technology and development status and trend of flexible die for sheet metal and profile forming. Aeronautical Manufact. Technol. 13, 42–46 (2011)
2.
go back to reference Li, M.Z., Fu, W.Z., Wang, X.T.: Current situation of flexible forming technology for 3D curved parts. Forging and Stamping 24, 36–40 (2020) Li, M.Z., Fu, W.Z., Wang, X.T.: Current situation of flexible forming technology for 3D curved parts. Forging and Stamping 24, 36–40 (2020)
3.
go back to reference Fan, J., Wang, G.L.: Precision analysis of parametric modification of the die face based on reverse engineering. Appl. Mech. Mater. 2601(385–386), 121–124 (2013)CrossRef Fan, J., Wang, G.L.: Precision analysis of parametric modification of the die face based on reverse engineering. Appl. Mech. Mater. 2601(385–386), 121–124 (2013)CrossRef
4.
go back to reference Wróbel, I., et al.: Reverse engineering of stamping die punch – a case study. Solid State Phenom. 3433(220–221), 951–956 (2015)CrossRef Wróbel, I., et al.: Reverse engineering of stamping die punch – a case study. Solid State Phenom. 3433(220–221), 951–956 (2015)CrossRef
5.
go back to reference Zhang, H.D., Jiang, S.R., Li, L.J., et al.: Cavity optimization for investment casting die of turbine blade based on reverse engineering. The Int. J. Adv. Manufact. Technol. 48(9–12), 839–846 (2010)CrossRef Zhang, H.D., Jiang, S.R., Li, L.J., et al.: Cavity optimization for investment casting die of turbine blade based on reverse engineering. The Int. J. Adv. Manufact. Technol. 48(9–12), 839–846 (2010)CrossRef
6.
go back to reference Smith, J.A., Doe, J.B.: 3D Road boundary extraction based on machine learning strategy using LiDAR and image-derived MMS point clouds. J. Robo. Automat. 45(2), 123–134 (2023) Smith, J.A., Doe, J.B.: 3D Road boundary extraction based on machine learning strategy using LiDAR and image-derived MMS point clouds. J. Robo. Automat. 45(2), 123–134 (2023)
7.
go back to reference Yang, Z.S., Tan, B., Pei, H.K., et al.: Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data. Sensors 18(10), 3347 (2018)CrossRef Yang, Z.S., Tan, B., Pei, H.K., et al.: Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data. Sensors 18(10), 3347 (2018)CrossRef
8.
go back to reference Maturana, D., Scherer, S.: VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE, Piscataway (2015) Maturana, D., Scherer, S.: VoxNet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE, Piscataway (2015)
9.
go back to reference Qi, C.R., Su, H., Mo, K., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 652–660. IEEE, Honolulu (2017) Qi, C.R., Su, H., Mo, K., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 652–660. IEEE, Honolulu (2017)
10.
go back to reference Qi, C.R., Li, Y., Su, H.: PointNet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems 30, 5099–5108 (2017) Qi, C.R., Li, Y., Su, H.: PointNet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems 30, 5099–5108 (2017)
11.
go back to reference Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18920–18930. IEEE, New Orleans (2022) Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18920–18930. IEEE, New Orleans (2022)
12.
go back to reference Altshuller, G.: And suddenly the inventor appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center, INC, Worcester (1999) Altshuller, G.: And suddenly the inventor appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center, INC, Worcester (1999)
13.
go back to reference Tan, R., Wang, Q., Yuan, C.: Inventive Problem Solving Theory: TRIZ-TRIZ Process, Tools and Development Trends. Mechanical Design 2001(07), 7–12+53 (2011) Tan, R., Wang, Q., Yuan, C.: Inventive Problem Solving Theory: TRIZ-TRIZ Process, Tools and Development Trends. Mechanical Design 2001(07), 7–12+53 (2011)
14.
go back to reference Zhang, H.G., Zhang, J.H., et al.: Innovative Design: Systematic Innovation Based on TRIZ, 1st edn. China Machine Press, Beijing (2017) Zhang, H.G., Zhang, J.H., et al.: Innovative Design: Systematic Innovation Based on TRIZ, 1st edn. China Machine Press, Beijing (2017)
15.
go back to reference Xu, C., Zhang, J., et al.: A model for iterative construction of conflict flow networks based on extensible conduction transformation. Advanced Engineering Informatics 60 (2024) Xu, C., Zhang, J., et al.: A model for iterative construction of conflict flow networks based on extensible conduction transformation. Advanced Engineering Informatics 60 (2024)
16.
go back to reference Hui, L., Cheng, M., Xie, J., Yang, J., Cheng, M.: Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition. IEEE Transactions on Image Processing 31, 1258–1270 (2022) Hui, L., Cheng, M., Xie, J., Yang, J., Cheng, M.: Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition. IEEE Transactions on Image Processing 31, 1258–1270 (2022)
17.
go back to reference Li, G.Y., Liang, Z.Y., Shi, X.X., et al.: Study on laser point cloud reduction method based on curvature feature constraint. Computer and Digital Engineering 48(08), 2034–2037+2063 (2020) Li, G.Y., Liang, Z.Y., Shi, X.X., et al.: Study on laser point cloud reduction method based on curvature feature constraint. Computer and Digital Engineering 48(08), 2034–2037+2063 (2020)
18.
go back to reference Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)CrossRef Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)CrossRef
19.
go back to reference Greengard, F.L., Jiang, S., Rachh, M., et al.: A new version of the adaptive fast gauss transform for discrete and continuous sources. SIAM Rev. 66(2), 287–315 (2024)MathSciNetCrossRef Greengard, F.L., Jiang, S., Rachh, M., et al.: A new version of the adaptive fast gauss transform for discrete and continuous sources. SIAM Rev. 66(2), 287–315 (2024)MathSciNetCrossRef
20.
go back to reference Fu, D., Zhou, S.G., Xu, Y., et al.: Point cloud plane fitting technology based on principal component analysis. Eng. Survey. Map. 23(4), 20–23 (2014) Fu, D., Zhou, S.G., Xu, Y., et al.: Point cloud plane fitting technology based on principal component analysis. Eng. Survey. Map. 23(4), 20–23 (2014)
21.
go back to reference Jin, Q., Dong, Z.G., Yang, G.L., et al.: Research on surface normal calculation method of workpiece with large curvature based on point cloud data. Aeronaut. Manufact. Technol. 67(1/2), 124–130 (2024) Jin, Q., Dong, Z.G., Yang, G.L., et al.: Research on surface normal calculation method of workpiece with large curvature based on point cloud data. Aeronaut. Manufact. Technol. 67(1/2), 124–130 (2024)
22.
go back to reference Liu, Y., Wang, Z.Y., Gao, N., et al.: Point cloud adaptive reduction for feature extraction. Optical Precision Engineering 25(1), 245–254 (2017)CrossRef Liu, Y., Wang, Z.Y., Gao, N., et al.: Point cloud adaptive reduction for feature extraction. Optical Precision Engineering 25(1), 245–254 (2017)CrossRef
Metadata
Title
Research on Method of Flexible Mold Surface Formation Based on Point Cloud and Neural Network
Authors
Rongjian Li
Jiannan Zhang
Jianhui Zhang
Zhongyou Wang
Xiangdong Guo
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_15

Premium Partner