1 Introduction
2 Analysis of Finite Element Simulation for Surface Roughness
2.1 Interrupted Cutting Phenomenon Generated by Axial Supersonic Vibration
2.2 Auxiliary Milling Mechanism of Axial Supersonic Vibration
2.3 Establishment of 3D Milling Simulation Model
Serial number | Spindle speed (r/min) | Feed per tooth (mm/z) | Depth of cut (mm) |
---|---|---|---|
1 | 900 | 0.08 | 6 |
2 | 1600 | 0.09 | 6 |
3 | 1700 | 0.06 | 9 |
4 | 1800 | 0.07 | 4 |
2.3.1 Constitutive Model of Materials
2.3.2 Material Failure Criteria
2.3.3 Chips Contact Model
2.3.4 Setting of Ultrasonic Motion Trial of Shank Cutter
2.4 Post-treatment of Finite Simulation Model
Serial number | yi (μm) | Absolute value of yi (μm) |
---|---|---|
1 | 0.9886 | 0.989 |
2 | 0.8354 | 0.835 |
3 | 0.145 | 0.145 |
4 | 0.552 | 0.552 |
5 | 0.6107 | 0.611 |
6 | 0.6417 | 0.642 |
7 | 0.7232 | 0.723 |
8 | 0.401 | 0.401 |
9 | 0.46 | 0.46 |
10 | 0.6516 | 0.652 |
11 | 0.224 | 0.224 |
12 | 0.1885 | 0.189 |
13 | 0.435 | 0.435 |
14 | 0.55 | 0.55 |
15 | 0.6506 | 0.651 |
16 | 0.647 | 0.647 |
17 | 0.479 | 0.479 |
18 | 0.512 | 0.512 |
19 | 0.1057 | 0.106 |
20 | 0.1678 | 0.168 |
21 | 0.216 | 0.216 |
Serial number | Spindle speed (r/min) | Feed per tooth (mm/z) | Depth of cut (mm) | Ra (μm) |
---|---|---|---|---|
1 | 900 | 0.08 | 6 | 0.327 |
2 | 1600 | 0.09 | 6 | 0.509 |
3 | 1700 | 0.06 | 9 | 0.346 |
4 | 1800 | 0.07 | 4 | 0.314 |
3 Empirical Model of Surface Roughness Based on ANOVA
3.1 Construction of Test Platform
Parameter | Parameter value (°) |
---|---|
Helix angle | 38 |
Front angle | 8 |
Back angle | 9 |
Interdental angle | 90 |
3.2 Orthogonal Test Design and Specific Test Parameters
Vibration frequency (kHz) | 25 | Amplitude (μm) | 8 |
---|---|---|---|
Factor | Level | ||
I | II | III | |
A- Spindle speed (r/min) | 1000 | 1500 | 2000 |
B- Feed per tooth (mm/z) | 0.05 | 0.07 | 0.09 |
C- Depth of cut (mm) | 3 | 6 | 9 |
Factor | A | B | (A*B)1 | (A*B)2 | C | (A*C)1 | (A*C)2 | (B*C)1 | (B*C)2 |
---|---|---|---|---|---|---|---|---|---|
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
3.3 Test Results and Analysis of Surface Roughness Based on ANOVA
No. | A | B | (A*B)1 | (A*B)2 | C | (A*C)1 | (A*C)2 | (B*C)1 | (B*C)2 | Ra |
---|---|---|---|---|---|---|---|---|---|---|
1 | I | I | I | I | I | I | I | I | I | 0.275 |
2 | I | I | I | I | II | II | II | II | II | 0.326 |
3 | I | I | I | I | III | III | III | III | III | 0.403 |
4 | I | II | II | II | I | I | I | II | III | 0.553 |
5 | I | II | II | II | II | II | II | III | I | 0.564 |
6 | I | II | II | II | III | III | III | I | II | 0.864 |
7 | I | III | III | III | I | I | I | III | II | 1.130 |
8 | I | III | III | III | II | II | II | I | III | 1.231 |
9 | I | III | III | III | III | III | III | II | I | 1.310 |
10 | II | I | II | III | I | II | III | I | I | 0.225 |
11 | II | I | II | III | II | III | I | II | II | 0.255 |
12 | II | I | II | III | III | I | II | III | III | 0.317 |
13 | II | II | III | I | I | II | III | II | III | 0.374 |
14 | II | II | III | I | II | III | I | III | I | 0.420 |
15 | II | II | III | I | III | I | II | I | II | 0.452 |
16 | II | III | I | II | I | II | III | III | II | 0.742 |
17 | II | III | I | II | II | III | I | I | III | 0.745 |
18 | II | III | I | II | III | I | II | II | I | 0.957 |
19 | III | I | III | II | I | III | II | I | I | 0.234 |
20 | III | I | III | II | II | I | III | II | II | 0.300 |
21 | III | I | III | II | III | II | I | III | III | 0.321 |
3.4 Surface Roughness Modeling Based on RSM
3.5 Optimization and Inspection of Surface Roughness Regression Model
Source of variance | Sum of square | Degree of freedom | Mean square | F value | P-value |
---|---|---|---|---|---|
A | 0.17 | 1 | 0.17 | 41.84 | 0.0009 |
B | 0.84 | 1 | 0.84 | 208.97 | ≤ 0.0001 |
C | 0.059 | 1 | 0.059 | 14.86 | 0.0130 |
AB | 0.028 | 1 | 0.028 | 7.01 | 0.0331 |
AC | 0.017 | 1 | 0.017 | 4.12 | 0.0818 |
BC | 0.003042 | 1 | 3.042×10−3 | 0.76 | 0.4790 |
A2 | 0.057 | 1 | 0.057 | 14.30 | 0.0071 |
B2 | 1.980×10−3 | 1 | 1.980×10−3 | 0.49 | 0.353 |
C2 | 1.698×10−3 | 1 | 1.698×10−3 | 0.042 | 0.5100 |
Source of variance | Sum of square | Degree of freedom | Mean square | F value | P value |
---|---|---|---|---|---|
Regression model | 1.27 | 9 | 0.14 | 25.99 | ≤ 0.0001 |
Residual | 0.038 | 7 | 5.441×10−3 | ||
Lack of fit | 0.024 | 3 | 8.100×10−3 | 2.35 | 0.2137 |
Pure error | 0.014 | 4 | 3.447×10−3 | ||
Sum | 1.31 | 16 |
3.6 Optimization of Auxiliary Milling Auxiliary Titanium Alloy Process Parameters for Supersonic Vibration
3.7 Experimental Verification of Regression Model and Optimal Milling Parameters
Serial number | RSM model prediction result (μm) | FEM simulation result (μm) | Experimental result (μm) |
---|---|---|---|
1 | 0.432 | 0.327 | 0.451 |
2 | 0.686 | 0.509 | 0.726 |
3 | 0.430 | 0.346 | 0.483 |
4 | 0.423 | 0.314 | 0.455 |