Skip to main content
Top
Published in:

01-05-2024 | Original Paper

Research on the co-pyrolysis kinetic and synergistic effect of waste PP and LDPE mixed plastics

Authors: Shuo Liu, Han Wu, Yafeng Li, Fengfu Yin, Dong Liang

Published in: Journal of Polymer Research | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pyrolysis behaviors of polypropylene (PP), low-density polyethylene (LDPE), and their mixtures are investigated by Thermal Gravimetric Analysis (TGA) under varying heating rates to research the co-pyrolysis kinetic and synergistic effect. Model-free methods (Flynn-Wall-Ozawa method, Kissinger-Akahira-Sunose method, and Starink method) and model-fitting techniques (Malek method, Coats-Redfern method) were utilized to determine key kinetic parameters. The average activation energy are 224.69–225.19 kJ/mol for PP, 186–188.5 kJ/mol for LDPE, 195.64–197.48 kJ/mol for PP/LDPE composites. Model-fitting analysis was employed to elucidate the thermal pyrolysis mechanisms. For PP and LDPE, the A3/2 mechanism was found to be the governing pathway, whereas the PP/LDPE blends exhibited the A1 mechanism. Subsequently, compensation effect equations were derived to elucidate the synergistic interactions between PP and LDPE during co-pyrolysis process. The co-pyrolysis of PP and LDPE mixtures exhibit a lower pyrolysis temperature compared to the individual materials. Furthermore, the activation energy and pre-exponential factor results indicate a promotion effect in the early stage and an inhibiting effect in the later stage of the pyrolysis process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Salem S, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manage 197:177–198CrossRefPubMed Al-Salem S, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manage 197:177–198CrossRefPubMed
2.
go back to reference Gopinath KP, Nagarajan VM, Krishnan A, Malolan R (2020) A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: Development of a comprehensive index. J Clean Prod 274:123031CrossRef Gopinath KP, Nagarajan VM, Krishnan A, Malolan R (2020) A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: Development of a comprehensive index. J Clean Prod 274:123031CrossRef
3.
go back to reference Harussani M, Sapuan S, Rashid U, Khalina A, Ilyas R (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803:149911CrossRefPubMed Harussani M, Sapuan S, Rashid U, Khalina A, Ilyas R (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803:149911CrossRefPubMed
4.
go back to reference Armenise S, SyieLuing W, Ramírez-Velásquez JM, Launay F, Wuebben D, Ngadi N, Rams J, Muñoz M (2021) Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. J Anal Appl Pyrol 158:105265CrossRef Armenise S, SyieLuing W, Ramírez-Velásquez JM, Launay F, Wuebben D, Ngadi N, Rams J, Muñoz M (2021) Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. J Anal Appl Pyrol 158:105265CrossRef
5.
go back to reference Shin S-K, Um N, Kim Y-J, Cho N-H, Jeon T-W (2020) New policy framework with plastic waste control plan for effective plastic waste management. Sustainability 12(15):6049CrossRef Shin S-K, Um N, Kim Y-J, Cho N-H, Jeon T-W (2020) New policy framework with plastic waste control plan for effective plastic waste management. Sustainability 12(15):6049CrossRef
7.
go back to reference Al-Salem S, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog Energy Combust Sci 36(1):103–129CrossRef Al-Salem S, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog Energy Combust Sci 36(1):103–129CrossRef
8.
go back to reference Özsin G, Pütün AE (2018) A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics. J Clean Prod 205:1127–1138CrossRef Özsin G, Pütün AE (2018) A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics. J Clean Prod 205:1127–1138CrossRef
9.
go back to reference Al-Salem S, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manage 29(10):2625–2643CrossRef Al-Salem S, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manage 29(10):2625–2643CrossRef
10.
go back to reference Kumar S, Panda AK, Singh RK (2011) A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recycl 55(11):893–910CrossRef Kumar S, Panda AK, Singh RK (2011) A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recycl 55(11):893–910CrossRef
11.
go back to reference Aznar MP, Caballero MA, Sancho JA, Francés E (2006) Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process Technol 87(5):409–420CrossRef Aznar MP, Caballero MA, Sancho JA, Francés E (2006) Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process Technol 87(5):409–420CrossRef
12.
go back to reference Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manage 115:308–326CrossRef Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manage 115:308–326CrossRef
13.
go back to reference Sharma BK, Moser BR, Vermillion KE, Doll KM, Rajagopalan N (2014) Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process Technol 122:79–90CrossRef Sharma BK, Moser BR, Vermillion KE, Doll KM, Rajagopalan N (2014) Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process Technol 122:79–90CrossRef
14.
go back to reference Passamonti FJ, Sedran U (2012) Recycling of waste plastics into fuels. LDPE conversion in FCC. Appl Catal B Environ 125:499–506CrossRef Passamonti FJ, Sedran U (2012) Recycling of waste plastics into fuels. LDPE conversion in FCC. Appl Catal B Environ 125:499–506CrossRef
15.
go back to reference Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94CrossRef Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94CrossRef
16.
go back to reference Wang C-Q, Wang H, Fu J-G, Liu Y-N (2015) Flotation separation of waste plastics for recycling—A review. Waste Manage 41:28–38CrossRef Wang C-Q, Wang H, Fu J-G, Liu Y-N (2015) Flotation separation of waste plastics for recycling—A review. Waste Manage 41:28–38CrossRef
17.
go back to reference Lazarevic D, Aoustin E, Buclet N, Brandt N (2010) Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour Conserv Recycl 55(2):246–259CrossRef Lazarevic D, Aoustin E, Buclet N, Brandt N (2010) Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour Conserv Recycl 55(2):246–259CrossRef
18.
go back to reference Park SS, Seo DK, Lee SH, Yu T-U, Hwang J (2012) Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. J Anal Appl Pyrol 97:29–38CrossRef Park SS, Seo DK, Lee SH, Yu T-U, Hwang J (2012) Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. J Anal Appl Pyrol 97:29–38CrossRef
19.
go back to reference Maniscalco M, La Paglia F, Iannotta P, Caputo G, Scargiali F, Grisafi F, Brucato A (2021) Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance. J Energy Inst 96:234–241CrossRef Maniscalco M, La Paglia F, Iannotta P, Caputo G, Scargiali F, Grisafi F, Brucato A (2021) Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance. J Energy Inst 96:234–241CrossRef
20.
go back to reference Aboulkas A, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers Manag 51(7):1363–1369CrossRef Aboulkas A, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers Manag 51(7):1363–1369CrossRef
21.
go back to reference Marcilla A, García-Quesada J, Sánchez S, Ruiz R (2005) Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J Anal Appl Pyrol 74(1–2):387–392CrossRef Marcilla A, García-Quesada J, Sánchez S, Ruiz R (2005) Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J Anal Appl Pyrol 74(1–2):387–392CrossRef
22.
go back to reference Yousef S, Eimontas J, Striūgas N, Zakarauskas K, Praspaliauskas M, Abdelnaby MA (2020) Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallised food packaging plastics. Fuel 282:118737CrossRef Yousef S, Eimontas J, Striūgas N, Zakarauskas K, Praspaliauskas M, Abdelnaby MA (2020) Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallised food packaging plastics. Fuel 282:118737CrossRef
23.
go back to reference Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers, Journal of research of the National Bureau of Standards. Section A Phys Chem 70(6):487 Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers, Journal of research of the National Bureau of Standards. Section A Phys Chem 70(6):487
24.
go back to reference Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRef Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRef
25.
go back to reference Aboulkas A, El Harfi K, El Bouadili A (2008) Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energy Convers Manage 49(12):3666–3671CrossRef Aboulkas A, El Harfi K, El Bouadili A (2008) Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energy Convers Manage 49(12):3666–3671CrossRef
26.
go back to reference Xu F, Wang B, Yang D, Hao J, Qiao Y, Tian Y (2018) Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers Manage 171:1106–1115CrossRef Xu F, Wang B, Yang D, Hao J, Qiao Y, Tian Y (2018) Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers Manage 171:1106–1115CrossRef
27.
go back to reference Hu Q, Tang Z, Yao D, Yang H, Shao J, Chen H (2020) Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. J Clean Prod 260:121102CrossRef Hu Q, Tang Z, Yao D, Yang H, Shao J, Chen H (2020) Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. J Clean Prod 260:121102CrossRef
28.
go back to reference Uçar S, Özkan AR, Karagöz S (2016) Co-pyrolysis of waste polyolefins with waste motor oil. J Anal Appl Pyrol 119:233–241CrossRef Uçar S, Özkan AR, Karagöz S (2016) Co-pyrolysis of waste polyolefins with waste motor oil. J Anal Appl Pyrol 119:233–241CrossRef
29.
go back to reference Chowlu ACK, Reddy PK, Ghoshal AK (2009) Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochim Acta 485(1):20–25CrossRef Chowlu ACK, Reddy PK, Ghoshal AK (2009) Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochim Acta 485(1):20–25CrossRef
30.
go back to reference Saha B, Chowdhury P, Ghoshal AK (2008) Al-MCM-41 catalyzed decomposition of polypropylene and hybrid genetic algorithm for kinetics analysis. Appl Catal B 83(3):265–276CrossRef Saha B, Chowdhury P, Ghoshal AK (2008) Al-MCM-41 catalyzed decomposition of polypropylene and hybrid genetic algorithm for kinetics analysis. Appl Catal B 83(3):265–276CrossRef
33.
go back to reference Saad JM, Williams PT, Zhang YS, Yao D, Yang H, Zhou H (2021) Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. J Anal Appl Pyrol 156:105135CrossRef Saad JM, Williams PT, Zhang YS, Yao D, Yang H, Zhou H (2021) Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. J Anal Appl Pyrol 156:105135CrossRef
34.
go back to reference Shan T, Bian H, Wang K, Li Z, Qiu J, Zhu D, Wang C, Tian X (2023) Study on pyrolysis characteristics and kinetics of mixed waste plastics under different atmospheres. Thermochim Acta 722:179467CrossRef Shan T, Bian H, Wang K, Li Z, Qiu J, Zhu D, Wang C, Tian X (2023) Study on pyrolysis characteristics and kinetics of mixed waste plastics under different atmospheres. Thermochim Acta 722:179467CrossRef
35.
go back to reference Tang X, Xie Q, Qiu R, Yang Y (2018) Development of a relationship between kinetic triplets and heating rates to improve pyrolysis kinetic modeling of polymer. Polym Degrad Stab 154:10–26CrossRef Tang X, Xie Q, Qiu R, Yang Y (2018) Development of a relationship between kinetic triplets and heating rates to improve pyrolysis kinetic modeling of polymer. Polym Degrad Stab 154:10–26CrossRef
36.
go back to reference Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–20CrossRef Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–20CrossRef
Metadata
Title
Research on the co-pyrolysis kinetic and synergistic effect of waste PP and LDPE mixed plastics
Authors
Shuo Liu
Han Wu
Yafeng Li
Fengfu Yin
Dong Liang
Publication date
01-05-2024
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 5/2024
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-024-03986-6

Other articles of this Issue 5/2024

Journal of Polymer Research 5/2024 Go to the issue

Premium Partners