Skip to main content
Top

2024 | OriginalPaper | Chapter

Research on Wavelet Packet Sample Entropy Features of sEMG Signal in Lower Limb Movement Recognition

Authors : Jianxia Pan, Liu Yang, Xinping Fu, Haicheng Wei, Jing Zhao

Published in: Intelligent Information Processing XII

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the application of Wavelet Packet Decomposition (WPT) and Sample Entropy (SampEn) for recognizing lower limb movements from surface electromyography (sEMG) signals. It begins by highlighting the challenges in extracting features from sEMG signals due to body weight influence and interference. The authors then discuss existing decomposition methods such as Wavelet Transform (WT), Empirical Mode Decomposition (EMD), and Variational Mode Decomposition (VMD). The chapter introduces the WPT-SampEn method, which combines WPT for signal decomposition and SampEn for feature extraction, offering superior signal energy concentration and more accurate movement recognition. The proposed method involves preprocessing the sEMG signals, decomposing them into subband signals using WPT, and extracting SampEn features from the subbands. The chapter also includes experimental data collection and analysis, demonstrating the effectiveness of the WPT-SampEn method in classifying three types of lower limb movements. The results show that the proposed method outperforms traditional methods in terms of accuracy and reliability, making it a promising solution for applications in rehabilitation robots, wearable exoskeletons, and human-computer interaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gao, B., Wei, C., Ma, H., et al.: Real-time evaluation of the signal processing of sEMG used in limb exoskeleton rehabilitation system. Appli. Bionics Biomech. 2018, 1–6 (2018)CrossRef Gao, B., Wei, C., Ma, H., et al.: Real-time evaluation of the signal processing of sEMG used in limb exoskeleton rehabilitation system. Appli. Bionics Biomech. 2018, 1–6 (2018)CrossRef
2.
go back to reference Gao, S., Wang, Y., Fang, C., et al.: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation. Appl. Sci. 10(8), 2638–2655 (2020)CrossRef Gao, S., Wang, Y., Fang, C., et al.: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation. Appl. Sci.  10(8), 2638–2655 (2020)CrossRef
3.
go back to reference Zhang, X., Li, J., Ovur, S.E., et al.: Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation. Electronics 9(2), 343–360 (2020)CrossRef Zhang, X., Li, J., Ovur, S.E., et al.: Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation. Electronics 9(2), 343–360 (2020)CrossRef
4.
go back to reference Bahador, A., Yousefi, M., Marashi, M., et al.: High accurate lightweight deep learning method for gesture recognition based on surface electromyography. Comput. Methods Programs Biomed. 195, 105643–105650 (2020)CrossRef Bahador, A., Yousefi, M., Marashi, M., et al.: High accurate lightweight deep learning method for gesture recognition based on surface electromyography. Comput. Methods Programs Biomed. 195, 105643–105650 (2020)CrossRef
5.
go back to reference Vijayvargiya A, Kumar R, Dey N, et al.: Comparative analysis of machine learning techniques for the classification of knee abnormality. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 1–6. IEEE (2020) Vijayvargiya A, Kumar R, Dey N, et al.: Comparative analysis of machine learning techniques for the classification of knee abnormality. In: 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 1–6.  IEEE (2020)
6.
go back to reference Vijayvargiya, A., Gupta, V., Kumar, R., et al.: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition IEEE Sens. J. 21(18), 20431–20439 (2021)CrossRef Vijayvargiya, A., Gupta, V., Kumar, R., et al.: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition  IEEE Sens. J. 21(18), 20431–20439 (2021)CrossRef
7.
go back to reference Vijayvargiya A, Khimraj, Kumar R, et al. Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal. Phys. Eng. Sci. Med. 44, 1297–1309 (2021) Vijayvargiya A, Khimraj, Kumar R, et al. Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal. Phys. Eng. Sci. Med. 44, 1297–1309 (2021)
8.
go back to reference Ryu, J., Lee, B.H., Kim, D.H.: SEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm. IEEE Signal Process. Lett. 24(7), 929–932 (2016)CrossRef Ryu, J., Lee, B.H., Kim, D.H.: SEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm. IEEE Signal Process. Lett. 24(7), 929–932 (2016)CrossRef
9.
go back to reference Javaid, H.A., Rashid, N., Tiwana M.I., et al.: Comparative analysis of emg signal features in time-domain and frequency-domain using myo gesture control. In: Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering, Valenciennes, France: ICMRE, pp. 157–162 (2018) Javaid, H.A., Rashid, N., Tiwana M.I., et al.: Comparative analysis of emg signal features in time-domain and frequency-domain using myo gesture control. In: Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering, Valenciennes, France: ICMRE, pp.  157–162 (2018)
10.
go back to reference Spiewak, C., Islam, M., Zaman, A., et al.: A comprehensive study on EMG feature extraction and classifiers. Open Access J. Biomed. Eng. Biosci. 1(1), 1–10 (2018) Spiewak, C., Islam, M., Zaman, A., et al.: A comprehensive study on EMG feature extraction and classifiers. Open Access J. Biomed. Eng. Biosci. 1(1), 1–10 (2018)
11.
go back to reference Nishad, A., Upadhyay, A., Pachori, R.B., et al.: Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals. Futur. Gener. Comput. Syst. 93, 96–110 (2019)CrossRef Nishad, A., Upadhyay, A., Pachori, R.B., et al.: Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals. Futur. Gener. Comput. Syst. 93, 96–110 (2019)CrossRef
12.
go back to reference Xi, X., Yang, C., Shi, J., et al.: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine. Neural. Process. Lett. 50, 2265–2280 (2019)CrossRef Xi, X., Yang, C., Shi, J., et al.: Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine. Neural. Process. Lett. 50, 2265–2280 (2019)CrossRef
13.
go back to reference Wei, C., Wang, H., Zhou, B., et al.: SEMG signal-based lower limb movements recognition using tunable Q-factor wavelet transform and Kraskov entropy. IRBM 44(4), 100773–100788 (2023)CrossRef Wei, C., Wang, H., Zhou, B., et al.: SEMG signal-based lower limb movements recognition using tunable Q-factor wavelet transform and Kraskov entropy. IRBM 44(4), 100773–100788 (2023)CrossRef
14.
go back to reference Zhang, X., Zhou, P.: Myoelectric pattern identification of stroke survivors using multivariate empirical mode decomposition. J. Healthcare Eng. 5, 261–274 (2014)CrossRef Zhang, X., Zhou, P.: Myoelectric pattern identification of stroke survivors using multivariate empirical mode decomposition. J. Healthcare Eng. 5, 261–274 (2014)CrossRef
15.
go back to reference Savithri,C.N., Priya, E., Rajasekar, K.: A machine learning approach to identify hand actions from single-channel sEMG signals. Biomedical Engineering/Biomedizinische Technik 67(2), 89–103 (2022) Savithri,C.N., Priya, E., Rajasekar, K.: A machine learning approach to identify hand actions from single-channel sEMG signals. Biomedical Engineering/Biomedizinische Technik 67(2), 89–103 (2022)
16.
go back to reference Sukumar, N., Taran, S., Bajaj, V.: Physical actions classification of surface EMG signals using VMD. In: 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 0705–0709. IEEE (2018) Sukumar, N., Taran, S., Bajaj, V.: Physical actions classification of surface EMG signals using VMD. In: 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 0705–0709.  IEEE (2018)
17.
go back to reference Xiao, F., Yang, D., Lv, Z., et al.: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals. Futur. Gener. Comput. Syst. 110, 1023–1036 (2020)CrossRef Xiao, F., Yang, D., Lv, Z., et al.: Classification of hand movements using variational mode decomposition and composite permutation entropy index with surface electromyogram signals. Futur. Gener. Comput. Syst. 110, 1023–1036 (2020)CrossRef
18.
go back to reference Kosmidou, V.E., Hadjileontiadis, L.J.: Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data. IEEE Trans. Biomed. Eng. 56(12), 2879–2890 (2009)CrossRef Kosmidou, V.E., Hadjileontiadis, L.J.: Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data. IEEE Trans. Biomed. Eng. 56(12), 2879–2890 (2009)CrossRef
19.
go back to reference Yu, Y.: Research on athlete skipping surface electromyography and energy consumption based on principal component analysis of wavelet packet J. Intell. Fuzzy Syst. 40(2), 2217–2227 (2021)CrossRef Yu, Y.: Research on athlete skipping surface electromyography and energy consumption based on principal component analysis of wavelet packet  J. Intell. Fuzzy Syst. 40(2), 2217–2227 (2021)CrossRef
20.
go back to reference Xu, B., Wu, Q., Xi, C., et al.: Recognition of the fatigue status of pilots using BF–PSO optimized multi-class GP classification with sEMG signals. Reliab. Eng. Syst. Saf. 199, 106930–106951 (2020)CrossRef Xu, B., Wu, Q., Xi, C., et al.: Recognition of the fatigue status of pilots using BF–PSO optimized multi-class GP classification with sEMG signals. Reliab. Eng. Syst. Saf. 199, 106930–106951 (2020)CrossRef
Metadata
Title
Research on Wavelet Packet Sample Entropy Features of sEMG Signal in Lower Limb Movement Recognition
Authors
Jianxia Pan
Liu Yang
Xinping Fu
Haicheng Wei
Jing Zhao
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_35

Premium Partner