Skip to main content
Top

2024 | OriginalPaper | Chapter

Residual-Based Identification of the Input Forces Using Gaussian Process Discrepancy Model

Authors : Antonina Kosikova, Andrew Smyth

Published in: Special Topics in Structural Dynamics & Experimental Techniques, Vol. 5

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a novel approach for system identification in the presence of incomplete output information available and with limited knowledge of the input forces. The correct identification of the dynamic system is a challenging task, and it becomes more problematic when the input information is unavailable. To overcome this limitation, this work integrates a set of system measurements with computational model responses, enabling recovery of dynamic system states and subsequent analysis of the model through an inverse problem formulation based on Bayesian model updating. The difference between the computational model response and the measurements is described with Gaussian Process discrepancy model that uses time-based kernel covariance function for the inference on model parameters. Such an assumption mitigates the effect of the measurement noise on parameter estimation, leading to improved fidelity in parameter estimation and uncertainty quantification. To find the forces applied to the system, an optimization strategy is used that aims to minimize the residuals of the input forces at the locations where the knowledge of forces is available. The inputs are identified using a combination of the known system measurement with pseudo-measurements, followed by an inference on the structural model parameters. The proposed technique shows promising results, offering a methodology for input and parameter estimation. The practical implications of the work include its potential application in real-world scenarios requiring consistent system identification and force estimation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kodrič, M., Čepon, G., Boltežar, M.: Experimental framework for identifying inconsistent measurements in frequency-based substructuring. Exp. Mech. 154, 73–76 (2022) Kodrič, M., Čepon, G., Boltežar, M.: Experimental framework for identifying inconsistent measurements in frequency-based substructuring. Exp. Mech. 154, 73–76 (2022)
2.
go back to reference Lourens, E., Reynders, E., De Roeck, G., Degrande, G., Lombaert, G. An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27, 446–460 (2012)CrossRef Lourens, E., Reynders, E., De Roeck, G., Degrande, G., Lombaert, G. An augmented Kalman filter for force identification in structural dynamics. Mech. Syst. Signal Process. 27, 446–460 (2012)CrossRef
3.
go back to reference Dertimanis, V.K., Chatzi, E., Azam, S.E., Papadimitriou, C.: Input-state-parameter estimation of structural systems from limited output information. Mech. Syst. Signal Process. 126, 711–746 (2019)CrossRef Dertimanis, V.K., Chatzi, E., Azam, S.E., Papadimitriou, C.: Input-state-parameter estimation of structural systems from limited output information. Mech. Syst. Signal Process. 126, 711–746 (2019)CrossRef
4.
go back to reference Impraimakis, M., Smyth, A.W.: An unscented Kalman filter method for real time input-parameter-state estimation. Mech. Syst. Signal Process. 162, 108026 (2022)CrossRef Impraimakis, M., Smyth, A.W.: An unscented Kalman filter method for real time input-parameter-state estimation. Mech. Syst. Signal Process. 162, 108026 (2022)CrossRef
5.
go back to reference Maes, K., Karlsson, F., Lombaert, G.: Tracking of inputs, states and parameters of linear structural dynamic systems. Mech. Syst. Signal Process. 130, 755–775 (2019)CrossRef Maes, K., Karlsson, F., Lombaert, G.: Tracking of inputs, states and parameters of linear structural dynamic systems. Mech. Syst. Signal Process. 130, 755–775 (2019)CrossRef
6.
go back to reference Alvarez, M., Luengo, D., Lawrence, n.d.: Latent force models. In: Artificial Intelligence and Statistics, pp. 9–16. PMLR (2009) Alvarez, M., Luengo, D., Lawrence, n.d.: Latent force models. In: Artificial Intelligence and Statistics, pp. 9–16. PMLR (2009)
7.
go back to reference Rogers, T., Worden, K., Cross, E.: On the application of Gaussian process latent force models for joint input-state-parameter estimation: with a view to Bayesian operational identification. Mech. Syst. Signal Process. 140, 106580 (2020)CrossRef Rogers, T., Worden, K., Cross, E.: On the application of Gaussian process latent force models for joint input-state-parameter estimation: with a view to Bayesian operational identification. Mech. Syst. Signal Process. 140, 106580 (2020)CrossRef
8.
go back to reference Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. B (Stat. Methodol.) 63(3), 425–464 (2001) Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. B (Stat. Methodol.) 63(3), 425–464 (2001)
9.
go back to reference Nayek, R., Chakraborty, S., Narasimhan, S.: A Gaussian process latent force model for joint input-state estimation in linear structural systems. Mech. Syst. Signal Process. 128, 497–530 (2019)CrossRef Nayek, R., Chakraborty, S., Narasimhan, S.: A Gaussian process latent force model for joint input-state estimation in linear structural systems. Mech. Syst. Signal Process. 128, 497–530 (2019)CrossRef
10.
go back to reference Ni, P., Li, J., Hao, H., Han, Q., Du, X.: Probabilistic model updating via variational Bayesian inference and adaptive Gaussian process modeling. Comput. Methods Appl. Mech. Eng. 383, 113915 (2021)MathSciNetCrossRef Ni, P., Li, J., Hao, H., Han, Q., Du, X.: Probabilistic model updating via variational Bayesian inference and adaptive Gaussian process modeling. Comput. Methods Appl. Mech. Eng. 383, 113915 (2021)MathSciNetCrossRef
11.
go back to reference Kosikova, A.M., Sedehi, O., Papadimitriou, C., Katafygiotis, L.S.: Bayesian structural identification using Gaussian process discrepancy models. Comput. Methods Appl. Mech. Eng. 417, 116357 (2023)MathSciNetCrossRef Kosikova, A.M., Sedehi, O., Papadimitriou, C., Katafygiotis, L.S.: Bayesian structural identification using Gaussian process discrepancy models. Comput. Methods Appl. Mech. Eng. 417, 116357 (2023)MathSciNetCrossRef
12.
go back to reference Chatzis, M.N., Chatzi, E.N., Smyth, A.W.: An experimental validation of time domain system identification methods with fusion of heterogeneous data. Earthquake Eng. Struct. Dyn. 44(4), 523–547 (2015)CrossRef Chatzis, M.N., Chatzi, E.N., Smyth, A.W.: An experimental validation of time domain system identification methods with fusion of heterogeneous data. Earthquake Eng. Struct. Dyn. 44(4), 523–547 (2015)CrossRef
13.
go back to reference Fraraccio, G., Brügger, A., Betti, R. Identification and damage detection in structures subjected to base excitation. Exp. Mech. 48, 521–528 (2008)CrossRef Fraraccio, G., Brügger, A., Betti, R. Identification and damage detection in structures subjected to base excitation. Exp. Mech. 48, 521–528 (2008)CrossRef
14.
go back to reference Mao, Y.M., Guo, X.L., Zhao, Y.: Experimental study of hammer impact identification on a steel cantilever beam. Exp. Tech. 34, 82–85 (2010)CrossRef Mao, Y.M., Guo, X.L., Zhao, Y.: Experimental study of hammer impact identification on a steel cantilever beam. Exp. Tech. 34, 82–85 (2010)CrossRef
Metadata
Title
Residual-Based Identification of the Input Forces Using Gaussian Process Discrepancy Model
Authors
Antonina Kosikova
Andrew Smyth
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-68901-7_15