Skip to main content
Top
Published in:

14-11-2018

Resilient distributed state estimation with mobile agents: overcoming Byzantine adversaries, communication losses, and intermittent measurements

Authors: Aritra Mitra, John A. Richards, Saurabh Bagchi, Shreyas Sundaram

Published in: Autonomous Robots | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Applications in environmental monitoring, surveillance and patrolling typically require a network of mobile agents to collectively gain information regarding the state of a static or dynamical process evolving over a region. However, these networks of mobile agents also introduce various challenges, including intermittent observations of the dynamical process, loss of communication links due to mobility and packet drops, and the potential for malicious or faulty behavior by some of the agents. The main contribution of this paper is the development of resilient, fully-distributed, and provably correct state estimation algorithms that simultaneously account for each of the above considerations, and in turn, offer a general framework for reasoning about state estimation problems in dynamic, failure-prone and adversarial environments. Specifically, we develop a simple switched linear observer for dealing with the issue of time-varying measurement models, and resilient filtering techniques for dealing with worst-case adversarial behavior subject to time-varying communication patterns among the agents. Our approach considers both communication patterns that recur in a deterministic manner, and patterns that are induced by random packet drops. For each scenario, we identify conditions on the dynamical system, the patrols, the nominal communication network topology, and the failure models that guarantee applicability of our proposed techniques. Finally, we complement our theoretical results with detailed simulations that illustrate the efficacy of our algorithms in the presence of the technical challenges described above.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the absence of any constraints placed on the sensing capabilities or movement patterns of an agent, one can just have each mobile agent patrol all the sensing locations. However, such an assumption would in general be impractical, thereby necessitating inter-agent communication. Note that it is precisely the need for inter-agent communication that makes the issues of communication losses and adversarial attacks studied in this paper relevant.
 
2
We resort to such a notation here since the superscript on the z[k] states are reserved for eigenvalues, and the subscripts are reserved for mobile agents. Thus, we introduce the notation \({\mathbf {v}}[k]\), with a superscript on \({\mathbf {v}}[k]\) pointing to a location number.
 
3
The gains \({\mathbf {L}}^{(i_r)}_i\) are agent-specific, since different agents might visit the same location with different frequencies.
 
4
Essentially, an odd period ensures that eigenvalues that are equal in magnitude, but opposite in sign in \({\mathbf {A}}\), remain so in \({\mathbf {A}}^{{\bar{T}}}\). Thus, if the eigenvalues of \({\mathbf {A}}\) are distinct in magnitude, then clearly no restrictions need to be imposed on the time-period \({\bar{T}}\).
 
5
Since we are considering system matrices with distinct eigenvalues, an eigenvalue is detectable w.r.t. the pair \(({\mathbf {A}},{\mathbf {C}}^{({\mathcal {P}}_i)})\) if and only if it is detectable w.r.t. \(({\mathbf {A}},{\mathbf {C}}^{(i_r)})\), for some \(i_r \in {\mathcal {P}}_i.\) The ‘only if’ part of the statement may not be true for system matrices with repeated eigenvalues.
 
6
This is one of the key differences of our present formulation with the resilient consensus literature. In the latter setting, there is no external state that needs to be tracked, and Sundaram and Hadjicostis (2011) and Pasqualetti et al. (2012) have shown that making the network sufficiently connected suffices to facilitate resilient consensus.
 
7
Details of such an attack strategy can be found in Mitra and Sundaram (2018c). For centralized systems where f sensors are compromised, Fawzi et al. (2014) and Chong et al. (2015) have shown that for recovering the state of the system asymptotically, the system must remain detectable after the removal of any 2f sensors.
 
8
For notational simplicity, while considering the eigenvalue \(\lambda _j\), we drop the superscript ‘j’ on the time-stamp \(\phi _{il}[k]\) and the delay \(\tau _{il}[k]\).
 
9
If agent i receives an estimate without a time-stamp from some agent in \({\mathcal {N}}^{(j)}_i \cap {\mathcal {A}}\), it simply assigns a value of 0 to such an estimate (without loss of generality). Note that based on Assumption 2, agent i is guaranteed to receive a time-stamped estimate from every regular agent l in \({\mathcal {N}}^{(j)}_i\) at least once over every interval of the form \([k-T,k], \, \forall k \ge T\), i.e., for each \(l \in {\mathcal {N}}^{(j)}_i \cap {\mathcal {R}}\), \({\bar{z}}^{(j)}_{il}[k]\) will necessarily be of the form \( {\lambda _j}^{\tau _{il}[k]}{\hat{z}}^{(j)}_l[k-\tau _{il}[k]]\), \(\, \forall k\ge T\).
 
10
In other words, due to false time-stamp information, the quantity \({\hat{z}}^{(j)}_l[k-\tau _{il}[k]]\) may not represent the true estimate of an adversarial agent l at time \((k-\tau _{il}[k])\). Thus, we resort to a slight abuse of notation here.
 
11
Explicit dependence of uv on the parameters represented by ijl and k is not shown to avoid cluttering of the exposition.
 
12
Although we only establish asymptotic stability of the error dynamics in Proposition 1, verifying exponential stability is fairly straightforward, and hence, not explicitly proven.
 
13
Unlike the SW-LFRE algorithm developed in Sect. 5, the algorithm we propose here is memoryless, i.e., at each time-step, an agent acts only on the information that it acquires (via measurements and from neighboring agents) at that time-step. We do this primarily to simplify the analysis.
 
14
The choice of \(m \ge 3\) is justified later in Remark 13.
 
15
To avoid cluttering the exposition, we drop the superscript ‘j’ on \({\mathcal {I}}_i[k]\) and certain other terms throughout the proof, since they can be inferred from context.
 
16
The result continues to hold for the general update rule (21).
 
17
The set \(\mathcal {M}^{(j)}_i[k]\) is not well-defined when \(\mathcal {I}_i[k]=1\). For such a case, l can be taken to be any node in the set \(\mathcal {N}^{(j)}_i\cap \mathcal {R}\).
 
18
The need for strong \((3f+1)\)-robustness in the baseline network was provided in Remark 13, and will also be justified explicitly via simulations.
 
Literature
go back to reference Abazeed, M., Faisal, N., Zubair, S., & Ali, A. (2013). Routing protocols for wireless multimedia sensor network: a survey. Journal of Sensors. Abazeed, M., Faisal, N., Zubair, S., & Ali, A. (2013). Routing protocols for wireless multimedia sensor network: a survey. Journal of Sensors.
go back to reference Alamdari, S., Fata, E., & Smith, S. L. (2014). Persistent monitoring in discrete environments: Minimizing the maximum weighted latency between observations. The International Journal of Robotics Research, 33(1), 138–154.CrossRef Alamdari, S., Fata, E., & Smith, S. L. (2014). Persistent monitoring in discrete environments: Minimizing the maximum weighted latency between observations. The International Journal of Robotics Research, 33(1), 138–154.CrossRef
go back to reference Artelli, M. J., & Deckro, R. F. (2008). Modeling the Lanchester laws with system dynamics. The Journal of Defense Modeling and Simulation, 5(1), 1–20.CrossRef Artelli, M. J., & Deckro, R. F. (2008). Modeling the Lanchester laws with system dynamics. The Journal of Defense Modeling and Simulation, 5(1), 1–20.CrossRef
go back to reference Asghar, A. B., Jawaid, S. T., & Smith, S. L. (2017). A complete greedy algorithm for infinite-horizon sensor scheduling. Automatica, 81, 335–341.MathSciNetMATHCrossRef Asghar, A. B., Jawaid, S. T., & Smith, S. L. (2017). A complete greedy algorithm for infinite-horizon sensor scheduling. Automatica, 81, 335–341.MathSciNetMATHCrossRef
go back to reference Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2014). Information acquisition with sensing robots: Algorithms and error bounds. In Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA) (pp. 6447–6454). Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2014). Information acquisition with sensing robots: Algorithms and error bounds. In Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA) (pp. 6447–6454).
go back to reference Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acquisition: Theory and application to multi-robot SLAM. In Proceedings of the 2015 IEEE international conference on robotics and automation (ICRA) (pp. 4775–4782). Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acquisition: Theory and application to multi-robot SLAM. In Proceedings of the 2015 IEEE international conference on robotics and automation (ICRA) (pp. 4775–4782).
go back to reference Chakrabarty, A., Ayoub, R., Żak, S. H., & Sundaram, S. (2017). Delayed unknown input observers for discrete-time linear systems with guaranteed performance. Systems & Control Letters, 103, 9–15.MathSciNetMATHCrossRef Chakrabarty, A., Ayoub, R., Żak, S. H., & Sundaram, S. (2017). Delayed unknown input observers for discrete-time linear systems with guaranteed performance. Systems & Control Letters, 103, 9–15.MathSciNetMATHCrossRef
go back to reference Chakrabarty, A., Fridman, E., Żak, S. H., & Buzzard, G. T. (2018). State and unknown input observers for nonlinear systems with delayed measurements. Automatica, 95, 246–253.MathSciNetMATHCrossRef Chakrabarty, A., Fridman, E., Żak, S. H., & Buzzard, G. T. (2018). State and unknown input observers for nonlinear systems with delayed measurements. Automatica, 95, 246–253.MathSciNetMATHCrossRef
go back to reference Chen, Y., Kar, S., & Moura, J. M. F. (2018). Resilient distributed estimation through adversary detection. IEEE Transactions on Signal Processing, 66(9), 2455–2469.MathSciNetCrossRefMATH Chen, Y., Kar, S., & Moura, J. M. F. (2018). Resilient distributed estimation through adversary detection. IEEE Transactions on Signal Processing, 66(9), 2455–2469.MathSciNetCrossRefMATH
go back to reference Chen, C.-T. (1998). Linear system theory and design. Oxford: Oxford University Press. Chen, C.-T. (1998). Linear system theory and design. Oxford: Oxford University Press.
go back to reference Chong, M. S., Wakaiki, M., & Hespanha, J. P. (2015). Observability of linear systems under adversarial attacks. In Proceedings of the American control conference (pp. 2439–2444). Chong, M. S., Wakaiki, M., & Hespanha, J. P. (2015). Observability of linear systems under adversarial attacks. In Proceedings of the American control conference (pp. 2439–2444).
go back to reference Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences, 104(50), 19735–19740.CrossRef Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences, 104(50), 19735–19740.CrossRef
go back to reference Deghat, M., Ugrinovskii, V., Shames, I., & Langbort, C. (2016). Detection of biasing attacks on distributed estimation networks. In Proceedings of the IEEE conference on decision and control (pp. 2134–2139). Deghat, M., Ugrinovskii, V., Shames, I., & Langbort, C. (2016). Detection of biasing attacks on distributed estimation networks. In Proceedings of the IEEE conference on decision and control (pp. 2134–2139).
go back to reference del Nozal, A. R., Orihuela, L., & Milláan, P. (2017). Distributed consensus-based Kalman filtering considering subspace decomposition. IFAC-PapersOnLine, 50(1), 2494–2499.CrossRef del Nozal, A. R., Orihuela, L., & Milláan, P. (2017). Distributed consensus-based Kalman filtering considering subspace decomposition. IFAC-PapersOnLine, 50(1), 2494–2499.CrossRef
go back to reference Dibaji, S. M., & Ishii, H. (2017). Resilient consensus of second-order agent networks: Asynchronous update rules with delays. Automatica, 81, 123–132.MathSciNetMATHCrossRef Dibaji, S. M., & Ishii, H. (2017). Resilient consensus of second-order agent networks: Asynchronous update rules with delays. Automatica, 81, 123–132.MathSciNetMATHCrossRef
go back to reference Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., & Weihl, W. E. (1986). Reaching approximate agreement in the presence of faults. Journal of the ACM (JACM), 33(3), 499–516.MathSciNetMATHCrossRef Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., & Weihl, W. E. (1986). Reaching approximate agreement in the presence of faults. Journal of the ACM (JACM), 33(3), 499–516.MathSciNetMATHCrossRef
go back to reference Doostmohammadian, M., & Khan, U. A. (2013). On the genericity properties in distributed estimation: Topology design and sensor placement. IEEE Journal of Selected Topics in Signal Processing, 7(2), 195–204.CrossRef Doostmohammadian, M., & Khan, U. A. (2013). On the genericity properties in distributed estimation: Topology design and sensor placement. IEEE Journal of Selected Topics in Signal Processing, 7(2), 195–204.CrossRef
go back to reference Dunbabin, M., Roberts, J. M., Usher, K., & Corke, P. (2004). A new robot for environmental monitoring on the Great Barrier Reef. In Proceedings of the 2004 Australasian conference on robotics & automation. Australian Robotics & Automation Association Dunbabin, M., Roberts, J. M., Usher, K., & Corke, P. (2004). A new robot for environmental monitoring on the Great Barrier Reef. In Proceedings of the 2004 Australasian conference on robotics & automation. Australian Robotics & Automation Association
go back to reference Fawzi, H., Tabuada, P., & Diggavi, S. (2014). Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Transactions on Automatic Control, 59(6), 1454–1467.MathSciNetMATHCrossRef Fawzi, H., Tabuada, P., & Diggavi, S. (2014). Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Transactions on Automatic Control, 59(6), 1454–1467.MathSciNetMATHCrossRef
go back to reference Gandin, L. S. (1963). Objective analysis of meteorological fields. Israel Program for Scientific Translations, 242. Gandin, L. S. (1963). Objective analysis of meteorological fields. Israel Program for Scientific Translations, 242.
go back to reference Goodin, D. (2016). There is a new way to take down drones, and it doesn’t involve shotguns. arsTechnica, October 2016. Goodin, D. (2016). There is a new way to take down drones, and it doesn’t involve shotguns. arsTechnica, October 2016.
go back to reference Graham, R., & Cortés, J. (2012). Adaptive information collection by robotic sensor networks for spatial estimation. IEEE Transactions on Automatic Control, 57(6), 1404–1419.MathSciNetMATHCrossRef Graham, R., & Cortés, J. (2012). Adaptive information collection by robotic sensor networks for spatial estimation. IEEE Transactions on Automatic Control, 57(6), 1404–1419.MathSciNetMATHCrossRef
go back to reference Guerrero-Bonilla, L., Prorok, A., & Kumar, V. (2017). Formations for resilient robot teams. IEEE Robotics and Automation Letters, 2(2), 841–848.CrossRef Guerrero-Bonilla, L., Prorok, A., & Kumar, V. (2017). Formations for resilient robot teams. IEEE Robotics and Automation Letters, 2(2), 841–848.CrossRef
go back to reference Gupta, V., Chung, T. H., Hassibi, B., & Murray, R. M. (2006). On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica, 42(2), 251–260.MathSciNetMATHCrossRef Gupta, V., Chung, T. H., Hassibi, B., & Murray, R. M. (2006). On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica, 42(2), 251–260.MathSciNetMATHCrossRef
go back to reference Han, W., Trentelman, H. L., Wang, Z., & Shen, Y. (2018). A simple approach to distributed observer design for linear systems. IEEE Transactions on Automatic Control. Han, W., Trentelman, H. L., Wang, Z., & Shen, Y. (2018). A simple approach to distributed observer design for linear systems. IEEE Transactions on Automatic Control.
go back to reference Hespanha, J. P., Naghshtabrizi, P., & Yonggang, X. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138–162.CrossRef Hespanha, J. P., Naghshtabrizi, P., & Yonggang, X. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138–162.CrossRef
go back to reference Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environmental and Ecological Statistics, 5(2), 173–190.CrossRef Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environmental and Ecological Statistics, 5(2), 173–190.CrossRef
go back to reference Jawaid, S. T., & Smith, S. L. (2015). Submodularity and greedy algorithms in sensor scheduling for linear dynamical systems. Automatica, 61, 282–288.MathSciNetMATHCrossRef Jawaid, S. T., & Smith, S. L. (2015). Submodularity and greedy algorithms in sensor scheduling for linear dynamical systems. Automatica, 61, 282–288.MathSciNetMATHCrossRef
go back to reference Kaur, T., & Kumar, D. (2015). Wireless multifunctional robot for military applications. In Proceedings of the 2015 2nd IEEE international conference on recent advances in engineering & computational sciences (RAECS) (pp. 1–5). Kaur, T., & Kumar, D. (2015). Wireless multifunctional robot for military applications. In Proceedings of the 2015 2nd IEEE international conference on recent advances in engineering & computational sciences (RAECS) (pp. 1–5).
go back to reference Khan, U., & Stankovic, A. M. (2013). Secure distributed estimation in cyber-physical systems. In Proceedings of the IEEE international conference on acoustics, speech and signal processing (pp. 5209–5213). Khan, U., & Stankovic, A. M. (2013). Secure distributed estimation in cyber-physical systems. In Proceedings of the IEEE international conference on acoustics, speech and signal processing (pp. 5209–5213).
go back to reference Khan, U., Kar, S., Jadbabaie, A., & Moura, J. M. F. (2010). On connectivity, observability, and stability in distributed estimation. In Proceedings of the 49th IEEE conference on decision and control (pp. 6639–6644). Khan, U., Kar, S., Jadbabaie, A., & Moura, J. M. F. (2010). On connectivity, observability, and stability in distributed estimation. In Proceedings of the 49th IEEE conference on decision and control (pp. 6639–6644).
go back to reference Khan, U. A., & Jadbabaie, A. (2014). Collaborative scalar-gain estimators for potentially unstable social dynamics with limited communication. Automatica, 50(7), 1909–1914.MathSciNetMATHCrossRef Khan, U. A., & Jadbabaie, A. (2014). Collaborative scalar-gain estimators for potentially unstable social dynamics with limited communication. Automatica, 50(7), 1909–1914.MathSciNetMATHCrossRef
go back to reference Khan, U., & Moura, J. M. F. (2008). Distributing the Kalman filter for large-scale systems. IEEE Transactions on Signal Processing, 56(10), 4919–4935.MathSciNetMATHCrossRef Khan, U., & Moura, J. M. F. (2008). Distributing the Kalman filter for large-scale systems. IEEE Transactions on Signal Processing, 56(10), 4919–4935.MathSciNetMATHCrossRef
go back to reference Kube, C. (2018). Russia has figured out how to jam U.S. drones in Syria, officials say. NBC News, Apr. 2018. Kube, C. (2018). Russia has figured out how to jam U.S. drones in Syria, officials say. NBC News, Apr. 2018.
go back to reference LeBlanc, H. J., Zhang, H., Koutsoukos, X., & Sundaram, S. (2013). Resilient asymptotic consensus in robust networks. IEEE Journal on Selected Areas in Communications, 31(4), 766–781.CrossRef LeBlanc, H. J., Zhang, H., Koutsoukos, X., & Sundaram, S. (2013). Resilient asymptotic consensus in robust networks. IEEE Journal on Selected Areas in Communications, 31(4), 766–781.CrossRef
go back to reference Liu, X., Cheng, S., Liu, H., Sha, H., Zhang, D., & Ning, H. (2012). A survey on gas sensing technology. Sensors, 12(7), 9635–9665.CrossRef Liu, X., Cheng, S., Liu, H., Sha, H., Zhang, D., & Ning, H. (2012). A survey on gas sensing technology. Sensors, 12(7), 9635–9665.CrossRef
go back to reference Lynch, K. M., Schwartz, I. B., Yang, P., & Freeman, R. A. (2008). Decentralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics, 24(3), 710–724.CrossRef Lynch, K. M., Schwartz, I. B., Yang, P., & Freeman, R. A. (2008). Decentralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics, 24(3), 710–724.CrossRef
go back to reference Martínez, S. (2010). Distributed interpolation schemes for field estimation by mobile sensor networks. IEEE Transactions on Control Systems Technology, 18(2), 491–500.CrossRef Martínez, S. (2010). Distributed interpolation schemes for field estimation by mobile sensor networks. IEEE Transactions on Control Systems Technology, 18(2), 491–500.CrossRef
go back to reference Matei, I., Baras, J. S., & Srinivasan, V. (2012). Trust-based multi-agent filtering for increased smart grid security. In Proceedings of the Mediterranean conference on control & automation (pp. 716–721). Matei, I., Baras, J. S., & Srinivasan, V. (2012). Trust-based multi-agent filtering for increased smart grid security. In Proceedings of the Mediterranean conference on control & automation (pp. 716–721).
go back to reference Millán, P., Orihuela, L., Vivas, C., & Rubio, F. R. (2012). Distributed consensus-based estimation considering network induced delays and dropouts. Automatica, 48(10), 2726–2729.MathSciNetMATHCrossRef Millán, P., Orihuela, L., Vivas, C., & Rubio, F. R. (2012). Distributed consensus-based estimation considering network induced delays and dropouts. Automatica, 48(10), 2726–2729.MathSciNetMATHCrossRef
go back to reference Mitra, A., & Sundaram, S. (2016a). An approach for distributed state estimation of LTI systems. In Proceedings of the 54th annual Allerton conference on communication, control, and computing (pp. 1088–1093). Mitra, A., & Sundaram, S. (2016a). An approach for distributed state estimation of LTI systems. In Proceedings of the 54th annual Allerton conference on communication, control, and computing (pp. 1088–1093).
go back to reference Mitra, A., & Sundaram, S. (2016b). Secure distributed observers for a class of linear time invariant systems in the presence of Byzantine adversaries. In Proceedings of the IEEE conference on decision and control (pp. 2709–2714). Mitra, A., & Sundaram, S. (2016b). Secure distributed observers for a class of linear time invariant systems in the presence of Byzantine adversaries. In Proceedings of the IEEE conference on decision and control (pp. 2709–2714).
go back to reference Mitra, A., & Sundaram, S. (2018a). Distributed observers for LTI systems. IEEE Transactions on Automatic Control, 63(11), 3689–3704.MathSciNetMATHCrossRef Mitra, A., & Sundaram, S. (2018a). Distributed observers for LTI systems. IEEE Transactions on Automatic Control, 63(11), 3689–3704.MathSciNetMATHCrossRef
go back to reference Mitra, A., & Sundaram, S. (2018b). A novel switched linear observer for estimating the state of a dynamical process with a mobile agent. In Proceedings of the 57th IEEE conference on decision and control. Mitra, A., & Sundaram, S. (2018b). A novel switched linear observer for estimating the state of a dynamical process with a mobile agent. In Proceedings of the 57th IEEE conference on decision and control.
go back to reference Mitra, A., & Sundaram, S. (2018d). Secure distributed state estimation of an LTI system over time-varying networks and analog erasure channels. In Proceedings of the 2018 American control conference (pp. 6578–6583). Mitra, A., & Sundaram, S. (2018d). Secure distributed state estimation of an LTI system over time-varying networks and analog erasure channels. In Proceedings of the 2018 American control conference (pp. 6578–6583).
go back to reference Mo, Y., Ambrosino, R., & Sinopoli, B. (2011). Sensor selection strategies for state estimation in energy constrained wireless sensor networks. Automatica, 47(7), 1330–1338.MathSciNetMATHCrossRef Mo, Y., Ambrosino, R., & Sinopoli, B. (2011). Sensor selection strategies for state estimation in energy constrained wireless sensor networks. Automatica, 47(7), 1330–1338.MathSciNetMATHCrossRef
go back to reference Moore, T. (1985). Robots for nuclear power plants. IAEA Bulletin, 27(3), 31–38. Moore, T. (1985). Robots for nuclear power plants. IAEA Bulletin, 27(3), 31–38.
go back to reference Ogren, P., Fiorelli, E., & Leonard, N. E. (2004). Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic control, 49(8), 1292–1302.MathSciNetMATHCrossRef Ogren, P., Fiorelli, E., & Leonard, N. E. (2004). Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic control, 49(8), 1292–1302.MathSciNetMATHCrossRef
go back to reference Olfati-Saber, R. (2009). Kalman-consensus filter: Optimality, stability, and performance. In Proceedings of the 48th IEEE conference on decision and control held jointly with the 28th Chinese control conference (pp. 7036–7042). Olfati-Saber, R. (2009). Kalman-consensus filter: Optimality, stability, and performance. In Proceedings of the 48th IEEE conference on decision and control held jointly with the 28th Chinese control conference (pp. 7036–7042).
go back to reference Park, H., & Hutchinson, S. (2018). Robust rendezvous for multi-robot system with random node failures: An optimization approach. Autonomous Robots, 1–12. Park, H., & Hutchinson, S. (2018). Robust rendezvous for multi-robot system with random node failures: An optimization approach. Autonomous Robots, 1–12.
go back to reference Park, H., & Hutchinson, S. A. (2017). Fault-tolerant rendezvous of multirobot systems. IEEE Transactions on Robotics, 33(3), 565–582.CrossRef Park, H., & Hutchinson, S. A. (2017). Fault-tolerant rendezvous of multirobot systems. IEEE Transactions on Robotics, 33(3), 565–582.CrossRef
go back to reference Park, S., & Martins, N. C. (2017). Design of distributed LTI observers for state omniscience. IEEE Transactions on Automatic Control, 62(2), 561–576.MathSciNetMATHCrossRef Park, S., & Martins, N. C. (2017). Design of distributed LTI observers for state omniscience. IEEE Transactions on Automatic Control, 62(2), 561–576.MathSciNetMATHCrossRef
go back to reference Pasqualetti, F., Bicchi, A., & Bullo, F. (2012). Consensus computation in unreliable networks: A system theoretic approach. IEEE Transactions on Automatic Control, 57(1), 90–104.MathSciNetMATHCrossRef Pasqualetti, F., Bicchi, A., & Bullo, F. (2012). Consensus computation in unreliable networks: A system theoretic approach. IEEE Transactions on Automatic Control, 57(1), 90–104.MathSciNetMATHCrossRef
go back to reference Qian, K., Song, A., Bao, J., & Zhang, H. (2012). Small teleoperated robot for nuclear radiation and chemical leak detection. International Journal of Advanced Robotic Systems, 9(3), 70.CrossRef Qian, K., Song, A., Bao, J., & Zhang, H. (2012). Small teleoperated robot for nuclear radiation and chemical leak detection. International Journal of Advanced Robotic Systems, 9(3), 70.CrossRef
go back to reference Rego, F. F. C., Aguiar, A. P., Pascoal, A. M., & Jones, C. N. (2017). A design method for distributed Luenberger observers. In Proceedings of the 56th IEEE conference on decision and control (pp. 3374–3379). Rego, F. F. C., Aguiar, A. P., Pascoal, A. M., & Jones, C. N. (2017). A design method for distributed Luenberger observers. In Proceedings of the 56th IEEE conference on decision and control (pp. 3374–3379).
go back to reference Roy, S., & Dhal, R. (2015). Situational awareness for dynamical network processes using incidental measurements. IEEE Journal of Selected Topics in Signal Processing, 9(2), 304–316.CrossRef Roy, S., & Dhal, R. (2015). Situational awareness for dynamical network processes using incidental measurements. IEEE Journal of Selected Topics in Signal Processing, 9(2), 304–316.CrossRef
go back to reference Saldana, D., Prorok, A., Sundaram, S., Campos, M. F. M., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In Proceedings of the American control conference (pp. 252–258). Saldana, D., Prorok, A., Sundaram, S., Campos, M. F. M., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In Proceedings of the American control conference (pp. 252–258).
go back to reference Saulnier, K., Saldana, D., Prorok, A., Pappas, G. J., & Kumar, V. (2017). Resilient flocking for mobile robot teams. IEEE Robotics and Automation Letters, 2(2), 1039–1046.CrossRef Saulnier, K., Saldana, D., Prorok, A., Pappas, G. J., & Kumar, V. (2017). Resilient flocking for mobile robot teams. IEEE Robotics and Automation Letters, 2(2), 1039–1046.CrossRef
go back to reference Schlotfeldt, B., Tzoumas, V., Thakur, D., & Pappas, G. J. (2018). Resilient active information gathering with mobile robots. arXiv preprint arXiv:1803.09730. Schlotfeldt, B., Tzoumas, V., Thakur, D., & Pappas, G. J. (2018). Resilient active information gathering with mobile robots. arXiv preprint arXiv:​1803.​09730.
go back to reference Smith, S. L., Schwager, M., & Rus, D. (2012). Persistent robotic tasks: Monitoring and sweeping in changing environments. IEEE Transactions on Robotics, 28(2), 410–426.CrossRef Smith, S. L., Schwager, M., & Rus, D. (2012). Persistent robotic tasks: Monitoring and sweeping in changing environments. IEEE Transactions on Robotics, 28(2), 410–426.CrossRef
go back to reference Smith, R. N., Schwager, M., Smith, S. L., Jones, B. H., Rus, D., & Sukhatme, G. S. (2011). Persistent ocean monitoring with underwater gliders: Adapting sampling resolution. Journal of Field Robotics, 28(5), 714–741.CrossRef Smith, R. N., Schwager, M., Smith, S. L., Jones, B. H., Rus, D., & Sukhatme, G. S. (2011). Persistent ocean monitoring with underwater gliders: Adapting sampling resolution. Journal of Field Robotics, 28(5), 714–741.CrossRef
go back to reference Speranzon, A., Fischione, C., & Johansson, K. H. (2006). Distributed and collaborative estimation over wireless sensor networks. In Proceedings of the 45th IEEE conference on decision and control (pp. 1025–1030). Speranzon, A., Fischione, C., & Johansson, K. H. (2006). Distributed and collaborative estimation over wireless sensor networks. In Proceedings of the 45th IEEE conference on decision and control (pp. 1025–1030).
go back to reference Srinivasan, S., Latchman, H., Shea, J., Wong, T., & McNair, J. (2004). Airborne traffic surveillance systems: Video surveillance of highway traffic. In Proceedings of the ACM 2nd international workshop on video surveillance & sensor networks (pp. 131–135). ACM. Srinivasan, S., Latchman, H., Shea, J., Wong, T., & McNair, J. (2004). Airborne traffic surveillance systems: Video surveillance of highway traffic. In Proceedings of the ACM 2nd international workshop on video surveillance & sensor networks (pp. 131–135). ACM.
go back to reference Su, L., & Vaidya, N. H. (2016). Fault-tolerant multi-agent optimization: Optimal iterative distributed algorithms. In Proceedings of the 2016 ACM symposium on principles of distributed computing (pp. 425–434). ACM. Su, L., & Vaidya, N. H. (2016). Fault-tolerant multi-agent optimization: Optimal iterative distributed algorithms. In Proceedings of the 2016 ACM symposium on principles of distributed computing (pp. 425–434). ACM.
go back to reference Su, L., & Vaidya, N. H. (2016). Non-Bayesian learning in the presence of Byzantine agents. In International symposium on distributed computing (pp. 414–427). Springer. Su, L., & Vaidya, N. H. (2016). Non-Bayesian learning in the presence of Byzantine agents. In International symposium on distributed computing (pp. 414–427). Springer.
go back to reference Sundaram, S., & Gharesifard, B. (2015). Consensus-based distributed optimization with malicious nodes. In Proceedings of the annual Allerton conference on communication, control and computing (pp. 244–249). Sundaram, S., & Gharesifard, B. (2015). Consensus-based distributed optimization with malicious nodes. In Proceedings of the annual Allerton conference on communication, control and computing (pp. 244–249).
go back to reference Sundaram, S., & Hadjicostis, C. N. (2011). Distributed function calculation via linear iterative strategies in the presence of malicious agents. IEEE Transactions on Automatic Control, 56(7), 1495–1508.MathSciNetMATHCrossRef Sundaram, S., & Hadjicostis, C. N. (2011). Distributed function calculation via linear iterative strategies in the presence of malicious agents. IEEE Transactions on Automatic Control, 56(7), 1495–1508.MathSciNetMATHCrossRef
go back to reference Thanou, D., Dong, X., Kressner, D., & Frossard, P. (2017). Learning heat diffusion graphs. IEEE Transactions on Signal and Information Processing over Networks, 3(3), 484–499.MathSciNetCrossRef Thanou, D., Dong, X., Kressner, D., & Frossard, P. (2017). Learning heat diffusion graphs. IEEE Transactions on Signal and Information Processing over Networks, 3(3), 484–499.MathSciNetCrossRef
go back to reference Tseng, L., Vaidya, N., & Bhandari, V. (2015). Broadcast using certified propagation algorithm in presence of Byzantine faults. Information Processing Letters, 115(4), 512–514.MathSciNetMATHCrossRef Tseng, L., Vaidya, N., & Bhandari, V. (2015). Broadcast using certified propagation algorithm in presence of Byzantine faults. Information Processing Letters, 115(4), 512–514.MathSciNetMATHCrossRef
go back to reference Ugrinovskii, V. (2013). Distributed robust estimation over randomly switching networks using \({H}_{\infty }\) consensus. Automatica, 49(1), 160–168.MathSciNetMATHCrossRef Ugrinovskii, V. (2013). Distributed robust estimation over randomly switching networks using \({H}_{\infty }\) consensus. Automatica, 49(1), 160–168.MathSciNetMATHCrossRef
go back to reference Usevitch, J., & Panagou, D. (2017). \(r\)-robustness and \((r,s)\)-robustness of circulant graphs. In Proceedings of the 56th IEEE conference on decision and control (pp. 4416–4421). Usevitch, J., & Panagou, D. (2017). \(r\)-robustness and \((r,s)\)-robustness of circulant graphs. In Proceedings of the 56th IEEE conference on decision and control (pp. 4416–4421).
go back to reference Usevitch, J., & Panagou, D. (2018). Resilient leader-follower consensus to arbitrary reference values. In Proceedings of the 2018 American control conference (pp. 1292–1298). Usevitch, J., & Panagou, D. (2018). Resilient leader-follower consensus to arbitrary reference values. In Proceedings of the 2018 American control conference (pp. 1292–1298).
go back to reference Vaidya, N. H., Tseng, L., & Liang, G. (2012). Iterative approximate Byzantine consensus in arbitrary directed graphs. In Proceedings of the ACM symposium on principles of distributed computing (pp. 365–374). Vaidya, N. H., Tseng, L., & Liang, G. (2012). Iterative approximate Byzantine consensus in arbitrary directed graphs. In Proceedings of the ACM symposium on principles of distributed computing (pp. 365–374).
go back to reference Vitus, M. P., Zhang, W., Abate, A., Jianghai, H., & Tomlin, C. J. (2012). On efficient sensor scheduling for linear dynamical systems. Automatica, 48(10), 2482–2493.MathSciNetMATHCrossRef Vitus, M. P., Zhang, W., Abate, A., Jianghai, H., & Tomlin, C. J. (2012). On efficient sensor scheduling for linear dynamical systems. Automatica, 48(10), 2482–2493.MathSciNetMATHCrossRef
go back to reference Wang, L., & Morse, A. S. (2018). A distributed observer for a time-invariant linear system. IEEE Transactions on Automatic Control, 63(7), 2123–2130.MathSciNetMATHCrossRef Wang, L., & Morse, A. S. (2018). A distributed observer for a time-invariant linear system. IEEE Transactions on Automatic Control, 63(7), 2123–2130.MathSciNetMATHCrossRef
go back to reference Wang, L., Morse, A. S., Fullmer, D., & Liu, J. (2017). A hybrid observer for a distributed linear system with a changing neighbor graph. In Proceedings of the 2017 56th IEEE conference on decision and control (pp. 1024–1029). Wang, L., Morse, A. S., Fullmer, D., & Liu, J. (2017). A hybrid observer for a distributed linear system with a changing neighbor graph. In Proceedings of the 2017 56th IEEE conference on decision and control (pp. 1024–1029).
go back to reference Xie, L., & Zhang, X. (2013). 3D clustering-based camera wireless sensor networks for maximizing lifespan with minimum coverage rate constraint. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM) (pp. 298–303). Xie, L., & Zhang, X. (2013). 3D clustering-based camera wireless sensor networks for maximizing lifespan with minimum coverage rate constraint. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM) (pp. 298–303).
go back to reference Yang, P., Freeman, R. A., & Lynch, K. M. (2008). Multi-agent coordination by decentralized estimation and control. IEEE Transactions on Automatic Control, 53(11), 2480–2496.MathSciNetMATHCrossRef Yang, P., Freeman, R. A., & Lynch, K. M. (2008). Multi-agent coordination by decentralized estimation and control. IEEE Transactions on Automatic Control, 53(11), 2480–2496.MathSciNetMATHCrossRef
go back to reference Yazıcıoğlu, A. Y., Egerstedt, M., & Shamma, J. S. (2015). Formation of robust multi-agent networks through self-organizing random regular graphs. IEEE Transactions on Network Science and Engineering, 2(4), 139–151.MathSciNetCrossRef Yazıcıoğlu, A. Y., Egerstedt, M., & Shamma, J. S. (2015). Formation of robust multi-agent networks through self-organizing random regular graphs. IEEE Transactions on Network Science and Engineering, 2(4), 139–151.MathSciNetCrossRef
go back to reference Zakaria, A. H., Mustafah, Y. M., Abdullah, J., Khair, N., & Abdullah, T. (2017). Development of autonomous radiation mapping robot. Procedia Computer Science, 105, 81–86.CrossRef Zakaria, A. H., Mustafah, Y. M., Abdullah, J., Khair, N., & Abdullah, T. (2017). Development of autonomous radiation mapping robot. Procedia Computer Science, 105, 81–86.CrossRef
go back to reference Zhang, H., Fata, E., & Sundaram, S. (2015). A notion of robustness in complex networks. IEEE Transactions on Control of Network Systems, 2(3), 310–320.MathSciNetMATHCrossRef Zhang, H., Fata, E., & Sundaram, S. (2015). A notion of robustness in complex networks. IEEE Transactions on Control of Network Systems, 2(3), 310–320.MathSciNetMATHCrossRef
Metadata
Title
Resilient distributed state estimation with mobile agents: overcoming Byzantine adversaries, communication losses, and intermittent measurements
Authors
Aritra Mitra
John A. Richards
Saurabh Bagchi
Shreyas Sundaram
Publication date
14-11-2018
Publisher
Springer US
Published in
Autonomous Robots / Issue 3/2019
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-9813-7

Other articles of this Issue 3/2019

Autonomous Robots 3/2019 Go to the issue