Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

28-06-2016 | LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS | Issue 2/2017

The International Journal of Life Cycle Assessment 2/2017

Resource depletion assessment of renewable electricity generation technologies—comparison of life cycle impact assessment methods with focus on mineral resources

Journal:
The International Journal of Life Cycle Assessment > Issue 2/2017
Authors:
Jana Lieberei, Shabbir H. Gheewala
Important notes
Responsible editor: Steven B. Young

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11367-016-1152-3) contains supplementary material, which is available to authorized users.

Abstract

Purpose

Renewable energies are promoted in order to reduce greenhouse gas emissions and the depletion of fossil fuels. However, plants for renewable electricity production incorporate specifically higher amounts of materials being rated as potentially scarce. Therefore, it is in question which (mineral) resources contribute to the overall resource consumption and which of the manifold impact assessment methods can be recommended to cover an accurate and complete investigation of resource use for renewable energy technologies.

Methods

Life cycle assessment is conducted for different renewable electricity production technologies (wind, photovoltaics, and biomass) under German conditions and compared to fossil electricity generation from a coal-fired power plant. Focus is given on mineral resource depletion for these technologies. As no consensus has been reached so far as to which impact assessment method is recommended, different established as well as recently developed impact assessment methods (CML, ReCiPe, Swiss Ecoscarcity, and economic scarcity potential (ESP)) are compared. The contribution of mineral resources to the overall resource depletion as well as potential scarcity are identified.

Results and discussion

Overall resource depletion of electricity generation technologies tends to be dominated by fossil fuel depletion; therefore, most renewable technologies reduce the overall resource depletion compared to a coal-fired power plant. But, in comparison to fossil electricity generation from coal, mineral resource depletion is increased by wind and solar power. The investigated methods rate different materials as major contributors to mineral resource depletion, such as gallium used in photovoltaic plants (Swiss Ecoscarcity), gold and copper incorporated in electrical circuits and in cables (CML and ReCiPe), and nickel (Swiss Ecoscarcity and ReCiPe) and chromium (ESP) for stainless steel production. However, some methods lack characterization factors for potentially important materials.

Conclusions

If mineral resource use is investigated for technologies using a wider spectrum of potentially scarce minerals, practitioners need to choose the impact assessment method carefully according to their scope and check if all important materials are covered. Further research is needed for an overall assessment of different resource compartments.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 2/2017

The International Journal of Life Cycle Assessment 2/2017 Go to the issue

NON-TOXIC IMPACT CATEGORIES ASSOCIATED WITH EMISSIONS TO AIR, WATER, SOIL

A comparative life cycle assessment of commercially available household silver-enabled polyester textiles