Skip to main content
Top
Published in: Journal of Economic Structures 1/2013

Open Access 01-12-2013 | Research

Restatement of the I-O Coefficient Stability Problem

Author: Emilian Dobrescu

Published in: Journal of Economic Structures | Issue 1/2013

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The capacity of input-output tables to reflect the structural peculiarities of an economy and to forecast, on this basis, its evolution, depends essentially on the characteristics of the matrix A—matrix of I-O (or technical) coefficients. However, the temporal behaviour of these coefficients is yet an open question. In most applications, the stability of matrix A is usually admitted. This is a reasonable assumption only for a short-medium term. In the case of longer intervals, the question is much more complicated.
We shall empirically discuss this problem by using Romanian input-output tables. Our statistical option was motivated inter alia by the existence of official annual data for two decades (1989–2009).
As an introduction, Sect. 1 characterises the general framework of paper. Section 2—The main characteristics of I-O coefficients as statistical time series—examines the variability of technical coefficients expressed in both volume and value terms. The analysis is convergent to other previous works, confirming that the evolution of these coefficients in real and nominal terms is roughly similar. The main finding of this section is that, on one hand, the I-O coefficients are volatile, but on the other, they are serially correlated.
Consequently, Sect. 3—Attractor hypothesis—examines a possible presence of attractors in corresponding statistical series. The paper describes a methodology to approximate these using new indicators obtained by summation—in columns and rows—of the technical coefficients (colsums sca j and rowsums sra i ). The RAS method is involved as a connecting technique between these indicators and sectoral data.
Section 4—Conclusions—presents the main conclusions of the research and outlines several possible future developments. The database and econometric analysis are presented in Statistical and Econometric Appendix.
JEL Classification: C12, C32, C43, C67.

1 Introduction

1. The capacity of input-output tables to reflect the structural peculiarities of the economy and to forecast, on this basis, its evolution, depends essentially on the characteristics of matrix A of I-O (or technical) coefficients. The so-called Leontief matrix [ ( I A ) 1 ] has proven to be a powerful analytical tool in the investigation of propagated effects induced by inter-industry production chains. Our paper utilises the methodological framework developed in [23, 24, 28, 41, 44].
The temporal behaviour of I-O coefficients is yet an open question. In most applications, the stability of matrix A is usually assumed. This comes from both classical and extended interpretations of the Cobb–Douglas production function. According to Sawyer (p. 327 in [38]), “Under the first of these alternative hypotheses, the a ij will be stable in volume terms. Under the second, the a ij will be stable in value terms”. Generally, the relative stability of the technical coefficients can be considered as a reasonable assumption for a short-medium term. In the case of longer intervals, the question is much more complicated.
2. We shall empirically discuss this problem by using Romanian input-output tables. Our statistical option was motivated inter alia by the existence of official annual data for two decades (1989–2009).
These tables are built on an extended classification comprising 105 branches [17]. To simplify computational operations, the present research relates to a more compact version of 10 sectors [11, 33], as described in Table 1.
Table 1
Sectoral structure of the Romanian input-output tables
Code
Definition
1
Agriculture, forestry, hunting, and fishing
2
Mining and quarrying
3
Production and distribution of electric and thermal power
4
Food, beverages, and tobacco
5
Textiles, leather, pulp and paper, furniture
6
Machinery and equipment, transport means, other metal products
7
Other manufacturing industries
8
Constructions
9
Transports, post, and telecommunications
10
Trade, business, and public services
The correspondence of this collapsed structure to the original extended nomenclature is detailed in [12]. As in any aggregation, the one proposed in Table 1 implies some losses of information.
Nevertheless, the chosen analysis classification remains sufficiently complex and relevant to involve in this discussion some conceptual anchors of chaos theory. Specifically, we investigate whether the I-O coefficients series could contain sets of attractor points. To answer this question, a methodology for their numerical estimation will be applied to the available data.
3. The robustness of structural changes analysis and of the sectoral dynamic general equilibrium models depends mainly on the temporal behaviour of I-O coefficients. These can be estimated:
• in volume terms (at constant prices), denoted as ca ij ; and
• in value terms (at current prices), usually denoted as a ij .
The first estimation concerns the real economy, while the second relates to the nominal one. These determinations are mediated by the relative prices ( reP ij ).
If cx ij represents the part of sector i’s production (at constant prices p 0 i ) used in sector j, and cX j —total output of the sector j (at constant prices p 0 j ), then:
ca ij = cx ij / cX j
(1)
and
a ij = x ij / X j
(2)
in which the same components of the above ratio are expressed in current prices ( p i and p j , respectively).
Introducing the indices P i = p i / p 0 i and P j = p j / p 0 j , we obtain
a ij = x ij / X j = cx ij P i / ( cX j P j ) = ( cx ij / cX j ) ( P i / P j ) = ca ij reP ij
(3)
where reP ij = P i / P j .
The I-O coefficients at constant prices were estimated using formula (3), which is equivalent to ca ij = a ij / reP ij .
Econometric estimations involve several aggregative indicators resulted from the technical coefficients in value terms, namely:
• Colsums ( sca j ), which summarises the I-O coefficients in columns,
sca j = j a ij with  j = fixed ; i = 1 , 2 , , n
(4)
These approximate the weight of intermediary consumption in the total output of every sector.
• Rowsums ( sra i ), which summarises the I-O coefficients in rows,
sra i = i a ij with  i = fixed ; j = 1 , 2 , , n
(5)
These approximate the contribution of each sector to the intermediary consumption of the entire economy.

2 The Main Characteristics of I-O Coefficients as Statistical Time Series

In the evaluation of the temporal features of I-O coefficients, three questions are relevant:
• Do some peculiarities exist in the co-movement of I-O coefficients real-nominal expression?
• Are I-O coefficients really stable?
• Are these coefficients serially correlated?
The following sections attempt to find answers to these problems.
1. Relating to the first question, in principle the dynamics of real and nominal I-O coefficients are interdependent. On the supply side, the modifications in production costs (reflected by ca ij ) influence the current prices of transactions. On the other hand, the changes in relative prices (reflected by a ij ) have an impact on the demand structure and, consequently, on the size of the output and the conditions (technology, human capital, etc.) in which this is achieved. Due to the complexity of economic life, in each historical period this interdependence has some specific features. This is the reason why statistical evaluation becomes important. Given these, the estimation of the synchronisation degree (SDa) of changes in a ij and ca ij can be conclusive.
1.1. Starting from some proposals advanced in the literature about economic structures and cycles, three concrete formulae are considered.
(a) The first could be referred to as the cosine synchronisation degree (SDa1) since it is estimated as a vectorial angle between time series of I-O coefficients in their double expressions:
SDa 1 = t ( a ij , t ca ij , t ) / [ ( t a ij , t 2 ) 1 / 2 ( t ca ij , t 2 ) 1 / 2 ]
(6)
(b) The well-known correlation coefficient is often applied in statistical comparisons of real-nominal economic time series (see, for instance, [1, 8, 9, 16, 20, 26, 35, 39]). This Galtung–Pearson synchronisation degree (SDa2) is calculated as a ratio of covariance of series a ij and ca ij to the product of their standard deviations, respectively:
SDa 2 = ( n t a ij , t ca ij , t t a ij , t tca ij , t ) / { [ ( n t a ij , t 2 ( t a ij , t ) 2 ) 1 / 2 ] [ ( n t ca ij , t 2 ( t ca ij , t ) 2 ) 1 / 2 ] }
(7)
(c) A third method used in the economic literature for such analysis is worth mentioning [6, 9, 16]. We shall refer to it as the binary synchronisation degree (SDa3), which measures the proportion in which the compared series evolve in the same direction. Technically, a dummy variable is used, its value being 1 when the respective I-O coefficient increases, and 0 when it decreases or stagnates. If such an alternative assignment is denoted as da ij for series a ij , and, correspondingly, as dca ij for series ca ij , then SDa3 is given as
Sda 3 = { t ( da ijt dca ijt ) + ( 1 da ijt ) ( 1 dca ijt ) } / n
(8)
n being the number of observations in the sample.
1.2. The above described SDa1, SDa2, and SDa3 do not raise special computational problems, and moreover, are easy to interpret. They have been applied in the series of all 100 technical coefficients, and the obtained results are synthesised in Fig. 1. Therefore, 95 % of SDa1 is positioned within 0.75–1 limits, and only 5 % do not exceed 0.75. At the same time, SDa2 is less than 0.5 in only one-fourth of cases; it is between 0.5–0.75 in 12 % of cases, and exceeds 0.75 in the rest (63 %). The last indicator is even more conclusive: SDa3 is within 0.75–1 in 87 % of cases, and less than 0.65 in none of the cases.
Summarising, all calculated synchronisation degrees of changes in a ij and ca ij indicate that the I-O coefficients in both their expressions—in volume and value terms—evolve in a similar manner.
1.3. A more nuanced understanding of this interdependence could be obtained by determining the global variability degree of changes in all I-O coefficients, avca for ca ij and ava for a ij :
avca t = j ( wq it ( i ( ca ijt ca ijt 1 ) 2 ) 1 / 2 )
(9)
ava t = j ( wq it ( i ( a ijt a ijt 1 ) 2 ) 1 / 2 )
(10)
where wq i represents the weight of sector i in the total output of economy.
There were applied two unit root tests for ava and avca: ADF—Augmented Dickey–Fuller and PP—Phillips–Perron. All available options concerning the exogenous (no one, constant, constant plus linear trend) have been computed. The results are detailed in Table 2. Indulgently accepting the stationarity assumption, the pairwise Granger test statistically accredits a certain interconnection between the respective series only on a short run, with the causality direction from avca toward ava (probability of null hypothesis = 0.0881) for one lag, and converse, from ava toward avca (probability of null hypothesis = 0.0943) for two lags. More appropriate for non-stationary series, the test Toda–Yamamoto [43] indicates again on a short run (two lags) an influence of ava on avca (according to F-statistic, and Chi-square, the probability for null hypothesis “ava does not cause avca” represents 0.1107 and, respectively, 0.0869).
Table 2
Unit root tests for ava and avca
 
Exogenous
None
Constant
Constant, linear trend
Null hypothesis: ava has a unit root
Null hypothesis: avca has a unit root
Null hypothesis: ava has a unit root
Null hypothesis: avca has a unit root
Null hypothesis: ava has a unit root
Null hypothesis: avca has a unit root
Augmented Dickey–Fuller
 t-statistic
−0.893149
−1.306076
−2.758188
−2.402669
−3.582018
−2.83151
 Prob.
0.3163
0.1702
0.0831
0.1541
0.0589
0.205
Phillips–Perron
 Adj. t-statistic
−0.713021
−1.355274
−2.661355
−2.441546
−3.582018
−2.676491
 Prob.
0.3943
0.1567
0.0989
0.1445
0.0589
0.2553
Except for 4 years (1991, 2002–2003, and 2005), the ratio of ava to avca was <1 in all periods. This means that the changes in relative prices somehow attenuated the shifts in technical coefficients in volume terms.
2. The examination of the co-movement pattern of changes in the real and nominal expressions of I-O coefficients does not clarify if these are relatively stable (small annual changes) or significantly volatile. This is important for our analysis.
In the case of I-O coefficients, we shall adopt a larger interpretation of volatility as an integrating measure of the frequency and size of the changes registered in their evolution. A comprehensive analysis of volatility determinants exceeds the thematic perimeter of this paper. Briefly, we recall the following factors:
• the performance of preponderantly used technologies that redound to most aspects of costs (labour productivity, energy and raw material intensities, quality of goods and services, length of productive cycles, etc.);
• the dimension, and structure of domestic demand, which influence the scale efficiency and relative prices;
• the openness degree of the country, with its impact on firms’ access to external markets, on import substitution effects, and on productive factors migration;
• the institutional reforms that have a great role in both emerging and developed economies; and
• the operational consequences of macroeconomic policies that can facilitate or, on the contrary, hinder the fructification of comparative advantages for the respective economy.
Quantitatively, the volatility of a given indicator will be approximated by its variation coefficient calculated (for the entire available time series) as follows. If q t is the value of this indicator at moment t ( t = 1 , 2 , , s ) and ω q its level admitted as referential, then this coefficient ( C V ) is determined by
C V = [ ( t ( q t / ω q 1 ) 2 ) / s ] 1 / 2
(11)
In principle, ω q can differ depending on the objectives of analysis. As a first choice, we adopt the sample mean, accommodating expression (11) to the standard deviation formula largely used in modern statistics. Such an approach is suitable in forecasting the volatility for different interested horizons by simple extrapolation of its statistically registered level.
The proposed procedure consists of the following steps:
• For each interval two estimations of the respective indicator are determined: an upper and a lower level. The first is obtained by multiplying the mean of the previous series by ( 1 + C V ) , while the other results similarly but using ( 1 C V ) as a multiplier. We shall designate these values as Y for the upper level and y for the lower one.
• On this basis, two new means are also computed, mixing the corresponding previous series with Y and y: they will be represented by the symbols M, and m, respectively. The statistical volatility is applied again by multiplying the new M by ( 1 + C V ) and m by ( 1 C V ) . This procedure is continued as much as it is considered useful (the forecast period being denoted by τ = 1 , 2 , , n ).
• The difference ( Y y ) can be admitted as an error ( ef V ) attributable to the initially estimated volatility. The interpretation of results would be facilitated by equalising the starting sample mean to unity.
More formally, for the upper level, we have
Y τ 1 = ( 1 + C V ) M τ 2 , τ = 1 , 2 , , n
(12)
M τ 1 = ( ( s + τ 2 ) M τ 2 + Y τ 1 ) / ( s + τ 1 ) = ( ( s + τ 2 ) M τ 2 + ( 1 + C V ) M τ 2 ) / ( s + τ 1 ) = M τ 2 ( s + τ 2 + 1 + C V ) / ( s + τ 1 ) = M τ 2 ( s + τ 1 + C V ) / ( s + τ 1 ) = M τ 2 ( 1 + C V / ( s + τ 1 ) )
(13)
Y τ = ( 1 + C V ) M τ 1 = ( 1 + C V ) M τ 2 ( 1 + C V / ( s + τ 1 ) )
(14)
A simplification can be obtained by passing to indices ( IY τ = Y τ / Y τ 1 ):
IY τ = { ( 1 + C V ) M τ 2 ( 1 + C V / ( s + τ 1 ) ) } / [ ( 1 + C V ) M τ 2 ] = ( 1 + C V / ( s + τ 1 ) )
(15)
This relationship is valid for τ 2 since Y 0 = M 0 = 1 and Y 1 = ( 1 + C V ) M 0 = ( 1 + C V ) . Finally, we have
Y n = ( 1 + C V ) τ ( 1 + C V / ( s + τ 1 ) ) for  τ = 2 , , n
(16)
Symmetrically, the expression of y n is determined as
y n = ( 1 C V ) τ ( 1 C V / ( s + τ 1 ) ) , again for  τ = 2 , , n
(16a)
and
ef Vn = [ ( 1 + C V ) τ ( 1 + C V / ( s + τ 1 ) ) ] [ ( 1 C V ) τ ( 1 C V / ( s + τ 1 ) ) ]
(17)
Therefore, ef Vn is influenced mainly by C V , s, and τ. Figures 2(a) and 2(b) illustrate some indifference curves of the initial C V depending on s and m, estimated under the conditions given in Table 3.
Table 3
Estimation of the initial C V depending on s and the final desirable ef V
Variant
Forecasted interval
Final desirable ef V
C V 050 A
5
0.05
C V 075 A
5
0.075
C V 100 A
5
0.1
C V 125 A
5
0.125
C V 050 B
10
0.05
C V 075 B
10
0.075
C V 100 B
10
0.1
C V 125 B
10
0.125
The presented algorithm can be used in establishing a kind of taxonomy scale of I-O coefficients volatility. Toward this aim, it would be necessary to determine the desirable levels of ef V and the length of τ (that is, the value of n). A possible starting point in this sense can be the expectable financial risk induced by economic decisions linked to forecasted I-O coefficients. Addressing this question requires further research. A possible solution to this problem could be adequately extrapolated in other socio-economic fields.
Returning to the Romanian I-O tables, the variation coefficient, based on formula (11), was computed for all statistical series in 1989–2009 (100 ca ij and 100 corresponding a ij ). The results are summarised in Table 4, which shows that there is no I-O coefficient with C V < 0.05 and only one with C V < 0.1 ; instead, 85 % of ca ij and 73 % of a ij are characterised by C V > 0.3 . The hypothesis that the mean of all C V would be between 0.4–0.65 was tested for both series C V ca ij and C V a ij . The results are presented in Fig. 3.
Table 4
Tabulation of statistical variation coefficients ( C V )
Limits of var. coeff.
C V ca ij
C V a ij
0.05–0.1
1
1
0.1–0.2
5
11
0.2–0.3
9
15
0.3–0.4
15
11
0.4–0.5
16
23
0.5–0.6
16
12
0.6–0.7
10
5
0.7–0.8
9
10
0.8–0.9
8
6
0.9–1
4
3
>1
7
3
Total
100
100
In many cases, the volatility is so high that the calculated ef V becomes abnormal even for very short intervals. As an example, the evolution of the error attributable to the initially estimated volatility ( ef V ) was determined for three cases: for C V = 0.1 (variant 1), C V = 0.2 (variant 2), and C V = 0.3 (variant 3), during τ = 1 , 2 , , 15 . The results of this exercise are denoted as ef V 1 , ef V 2 , and ef V 3 , and are summarised in Fig. 4. We recall that the computed data represent indices comparatively to the mean level of the statistical series (the mean equalised to 1). For C V = 0.3 , the difference between the forecasted limits of the respective indicator can reach 0.7 in five years and 0.8 in ten. Even for C V = 0.1 , the potential forecasting error is hardly acceptable. As we have already shown, the levels calculated for Romanian I-O tables are overall much higher than the simulated (in Fig. 4) values of C V .
3. Like other previous studies, the analysis of Romanian I-O tables confirms that the technical coefficients are volatile. What needs to be documented is the nature of this volatility, and the highly questionable factor is the presence of non-linearities in the respective statistical series. Such a possibility has been revealed in many economic indicators [3, 34]. In the case of Romanian I-O tables, we shall also examine whether the data regarding the technical coefficients are independent or, on the contrary, serially correlated.
It is widely accepted that: “The correlation sum in various embeddings can…be used as a measure of determinism in a time series” (p. 313 in [40]). The BDS test is sensitive to a large variety of possible deviations from independence in time series, including linear dependence, non-linear dependence, or chaos. Concerning this technique, our turns to the conceptual and applicative framework developed in [2, 6, 32]. Thus, the null hypothesis of independent and identically distributed (i.i.d.) data is checked against an unspecified alternative.
For the I-O tables examined in this paper, the BDS test was applied to both categories of coefficients—at constant ( ca ij ) and current prices ( a ij ). Concerning the embedding dimension, we sought to cover an extended range of possibilities. Due to the insufficient length of the statistical series, five such variants were adopted: 2, 3, 4, 5, and 6. As a principal guiding mark, the p-value for the tested null hypothesis was retained, computed for the sample data (normal probability) and for their random repetitions (bootstrap probability). Recent software provided both probabilities (normal and bootstrap) for three options related to the distance used for testing: the fraction of pairs, the standard deviations, and the fraction of range. Therefore, 30 p-values were computed for each technical coefficient, resulting in five dimensions, two tested series (original and bootstrap), and three distances.
The characterisation of the global distributions of the obtained p-values for all series of technical coefficients will be discussed. Two classifications are significant.
First, the p-values for all 3000 estimations are classified according to the following thresholds: under 0.05, 0.05–0.1, 0.1–0.25, and 0.25–1, presented in Fig. 5. This shows that in the case of ca ij , over 75 % of p-values (2252) are below 0.05; if the group 0.05–0.1 is added, the proportion reaches 80 %. The picture is similar for a ij : almost 72 % of tests are estimated with p-values of under 0.05, and approximately 76 % have p-values of less than 0.1. This means that, generally, the series of I-O coefficients (either at constant or current prices) are not independent.
The second application sorts I-O coefficients depending on the number of registered BDS p-values under 0.05. Toward this aim, six classes are delimited: up to 5 times, 5–10, 10–15, 15–20, 20–25, and 25–30. Evidently, the sum of classes is equal to 100 (the totality of coefficients). Figure 6 synthesises this distribution, showing that in each of the 86 ca ij , at least 15 tests had p-values of under 0.05. The result is no different in the case of a ij coefficients: among 90 cases, at least 10 p-values were under 0.05. The similarity of the ca ij and a ij series suggests that the volatility of relative prices does not substantially influence the presence of serial correlation in the data.
Thus, in this section, we can conclude that, on one hand, the I-O coefficients are volatile, but on the other, they are serially correlated. Both statements have statistical support. More simply stated, we acknowledge a paradox because the high volatility indicates rather the presence of a quasi-disorder, while the serial correlation indicates a possible stable pattern in the analysed time series. The following section focuses on this exciting matter.

3 Attractor Hypothesis

The revealed contradictory combination of relatively high volatility of data and their consistent serial correlation generates a legitimate question: Is this contradiction a sign of a possible presence of an attractor in statistical series?
1. Generally, an attractor is considered a point or a closed subset of points (lines, surfaces, volumes), toward which a given system tends to evolve independently of its initial (starting) state [2931, 36, 37]. Three types are frequently mentioned:
• stable steady states,
• different types of cycles, and
• strange attractors.
The first type is relatively usual in Economics (“At best, the notion of equilibrium might, in practice, be identified with the notion of <attractor>”; p. 34 in [14]). The list of such examples is long, from the optimal rates of accumulation to the extended palette of Phillips curves.
Such points or lines need to be regarded rather as historical (that is, contextually determined) phenomena than as permanent, inflexible benchmarks. It is worth mentioning that some authors considered the “natural rate of unemployment” as a rather weak attractor (p. xiii in [4]).
Taking into account the numerous such applications in economics, the following systematisation of types of stable steady states would be useful:
• stable points,
• constant rates of movement (in different expressions, such as indices, elasticities, ratios, spreads, etc.), and
• bands of evolution.
All these are interesting perspectives in researching I-O tables. However, such a target would require many and sustained efforts. Our target is very narrow, namely, to attempt to identify in the studied statistical series some fixed points as possible attractors. This hypothesis will be used in two sub-variants: fixed points as such or slightly variable points with gradually decreasing influence of unknown factors (cumulated over a time parameter). Besides, the econometric analysis will concentrate on the dynamics of each I-O coefficient, considered separately and not in connection with other series.
Therefore, the evolution of I-O coefficients is conceived as an auto-regressive adaptive process, the differences between their actual and long-run levels being influenced by the past deviations. In the simplest form, such an application for Romanian input-output tables was developed in [10]. In a general notation, if y is the time series of interest, we would have the following relationship:
y t = y ˜ α ( y ( 1 ) y ˜ ) = y ˜ ( 1 + α ) α y ( 1 )
(18)
where y ˜ represents the long-run levels of y (or the attractor according to this paper’s terminology). It is assumed that 0 < | α | < 1 , which means that y tends asymptotically towards y ˜ . Correspondingly, the first-order difference operator d ( y ) is defined as
d ( y ) = y y ( 1 ) = y ˜ ( 1 + α ) α y ( 1 ) y ( 1 ) = y ˜ ( 1 + α ) ( 1 + α ) y ( 1 ) = a 0 a 1 y ( 1 )
(19)
The expression (19) contains the equivalencies a 0 = y ˜ ( 1 + α ) and a 1 = ( 1 + α ) .
To be more realistic, this determination will be relaxed by two amendments. On one hand, the last formula will be extended, with gradually diminishing influence of time. On the other, the auto-regressive process may involve lags of higher orders, not only of the first one, as in (19).
2. Even under such modifications, the approximation of possible attractor points requires the presence of at least one non-differentiated observation in the computational formula. Therefore, it would be preferable to use the statistical series stationary in levels ( I ( 0 ) ). Unfortunately, most of the available data do not observe such a restriction. From this point of view, two already mentioned unit root tests were applied: ADF—Augmented Dickey–Fuller and PP—Phillips–Perron test. Each was computed in three versions for the exogenous variables:
• none (denoted as 1),
• individual effects (denoted as 2), and
• individual effects and individual linear trends (denoted 3).
The p-values calculated for all 100 technical coefficients were grouped as follows: 0–0.05, 0.05–0.1, 0.01–0.25, and 0.25–1.
The corresponding distribution for the technical coefficients at constant prices ( ca ij ) is presented in Figs. 7 and 8. Both unit root tests (ADF and PP) show that in around 80 % of the cases, the p-values exceed 0.1. The same result is found for the technical coefficients at current prices (see Figs. 9 and 10).
At this point, we are confronted with a problem. The BDS test indicated the presence of temporal correlation in the data for technical coefficients (either at constant or at current prices). As previously mentioned, this finding would justify the identification of possible attractor points in their evolution. Since the series are not stationary in levels, in order to avoid the calculation of attractor points (as levels) by first- or second-order differentiation (a difficult computational task), an indirect way to approximate such points will be proposed.
The first step is to determine colsums ( sca j ) and rowsums ( sra i ) for the technical coefficients at current prices. The resulting series are given in Statistical and Econometric Appendix. With respect to these time series, PANEL analysis did not reveal compelling signs of common explicative parameters. For this reason, they were examined separately. Table 5 shows the p-values of the ADF and PP tests for the sca i series. In only three cases ( sca 2 , sca 3 , and sca 4 ) are the corresponding p-values situated in the proximity of 0.25. Consequently, the series sca i will be used as such in regressions.
Table 5
ADF and PP tests for sca i
Variable
Exogenous
ADF
PP
t-statistic
Prob.
t-statistic
Prob.
sca 1
Constant, linear trend
−4.54901
0.009
−4.52912
0.0094
sca 2
Constant
−2.02573
0.274
−2.00889
0.2809
sca 3
Constant
−3.98533
0.0073
−2.00269
0.2833
sca 4
Constant, linear trend
−4.79669
0.0072
−2.85646
0.1956
sca 5
Constant, linear trend
−6.12916
0.0005
−3.86767
0.0339
sca 6
Constant, linear trend
−5.45292
0.0026
−3.4261
0.0761
sca 7
Constant
−4.76606
0.0018
−2.99545
0.0525
sca 8
Constant
−5.00001
0.0008
−7.99152
0
sca 9
Constant
−4.47988
0.0028
−2.81411
0.0741
sca 10
Constant, linear trend
−4.43914
0.012
−7.71446
0
Table 6 presents the same indicators for sra i . The introduction of econometric estimations for series sra 5 , sra 8 , and sra 10 as such would clearly be too risky. Consequently, the first two were recalculated by the Hodrick–Prescott filter, obtaining for each the sub-series denoted as HP and HPd (difference between filter and primary data), respectively. The third series ( sra 10 ) was replaced with the corresponding logarithms. Table 7 shows the unit root test results, based on which the new series for sra 5 , sra 8 , and sra 10 were used in regressions.
Table 6
ADF and PP tests for sra i
Variable
Exogenous
ADF
PP
t-statistic
Prob.
t-statistic
Prob.
sra 1
Constant, linear trend
−3.06826
0.1399
−1.59124
0.1031
sra 2
Constant
−2.94275
0.0581
−2.91376
0.0614
sra 3
Constant
−3.51945
0.0183
−3.51945
0.0183
sra 4
Constant
−2.6057
0.1083
−2.6057
0.1083
sra 5
Constant, linear trend
−2.28894
0.4194
−2.54869
0.3041
sra 6
None
−2.36343
0.0209
−2.17192
0.0319
sra 7
Constant, linear trend
−4.96559
0.0044
−2.84798
0.1981
sra 8
Constant, linear trend
−2.34672
0.3929
−1.90162
0.6163
sra 9
Constant
−2.91805
0.0609
−2.91805
0.0609
sra 10
Constant
−1.22677
0.6415
−1.28041
0.6175
Table 7
ADF and PP tests for derived series sra 5 , sra 8 , and sra 10
Variable
Exogenous
ADF
PP
t-statistic
Prob.
t-statistic
Prob.
sra 5 HP
None
−2.48196
0.0168
−1.41255
0.1422
sra 5 HPd
None
−5.36025
0
−3.91121
0.0005
sra 8 HP
Constant
−3.84112
0.0116
−2.06376
0.5334
sra 8 HPd
None
−3.73356
0.0008
−3.89625
0.0005
sra 10 l
None
−4.16256
0.0003
−5.48654
0
The formula (19) with the mentioned amendments was investigated using different specifications. The proposed selection considered, beside the mentioned premises, the results of tests for omitted or redundant variables, and outliers, also. It has also tried to reduce the econometric compromises as much as possible. For the current paper, several types of relationships were retained according to the scheme given in Table 8. Sometimes dummy variables were introduced to decrease the influence of data outliers.
Table 8
Main econometric relationships
Variables (y)
Specification
sca 1 , sra 2 , sra 4 , sra 9 , log ( sra 10 )
d ( y ) = a 0 + a 1 y ( 1 ) , with possible a 1 y ( 3 ) or a 2 d ( y , 2 )
sca 8 , sca 10
d ( y ) = b 0 + b 1 y ( 1 ) + b 2 t / ( t + 1 ) , with possible b 0 = 0
sca 2 , sra 3 , sra 5 HPd
d ( y ) = c 0 + c 1 y ( 1 ) + c 2 d ( y ( 1 ) ) , with possible c 0 = 0 or c 1 y ( 2 )
sca 5 , sca 6 , sca 9
d ( y ) = d 0 + d 1 y ( 1 ) + d 2 d ( y ( 1 ) ) + d 3 d ( y ( 2 ) ) + d 4 t / ( t + 1 ) , with possible d 3 = 0
sra 8 HP , sra 8 HPd
d ( y ) = e 0 + e 1 y ( 1 ) + e 2 d ( y , 2 ) , with possible e 0 = e 1 = 0
sca 7 , sra 5 HP
d ( y ) = f 0 + f 1 y ( 1 ) + f 2 d ( y ( 1 ) ) + f 3 d ( y ( 2 ) ) + f 4 d ( y ( 3 ) ) + f 5 t / ( t + 1 ) with possible f 3 = f 4 = f 5 = 0
sra 1 , sra 6
d ( y ) = g 0 + g 1 y ( 1 ) + g 2 d ( y ( 1 ) ) + g 3 t 1 , with possible g 2 d ( y ( 2 ) )
sca 3
d ( y ) = h 0 + h 1 y ( 3 ) + h 2 t 1
sca 4 , sra 7
d ( y ) = i 0 + i 1 y ( 2 ) + i 2 d ( y , 2 ) + i 3 t / ( t + 1 ) or i 3 t 1
3. The OLS-solution of system SyS1scr (Statistical and Econometric Appendix) was submitted to econometric controls from four standpoints: (a) variance inflation factors, (b) Breusch–Pagan–Godfrey heteroskedasticity test, (c) correlogram squared residuals, and (d) stationarity of residuals.
Concerning the variance inflation factors (Table 9), it is conclusive that more than 77 % of the centred VIFs do not exceed 2, and approximately 15 % are situated between 2 and 3; even the rest do not surpass 5.3. Based on these results, we could accept that the specification of the system SyS1scr is not contaminated in an alarming manner by collinearity effects.
Table 9
Variance Inflation Factors—SyS1scr
Variable
Coefficient variance
Uncentred VIF
Centred VIF
Variable
Coefficient variance
Uncentred VIF
Centred VIF
c(1)
0.007439
181.7134
NA
c(39)
0.024642
1.450884
1.315947
c(2)
0.032656
182.2648
1.009286
c(40)
0.109405
22.57514
5.223014
c(501)
0.00087
1.062407
1.009286
c(510)
0.001322
1.149574
1.085709
c(3)
0.003984
74.7162
NA
c(41)
0.010673
94.24219
NA
c(4)
0.00863
74.77052
1.17408
c(42)
0.035631
93.71807
2.198215
c(5)
0.014339
1.296515
1.292649
c(43)
0.014986
2.1191
2.11897
c(6)
0.001936
128.8835
NA
c(511)
0.002527
1.174249
1.112446
c(7)
0.003913
153.3235
1.466782
c(44)
0.020214
88.31065
NA
c(8)
0.007181
6.302923
1.458253
c(45)
0.043413
87.61261
1.624957
c(9)
0.025715
4402.565
NA
c(46)
0.044123
1.654492
1.645571
c(10)
0.014377
1123.768
4.799226
c(512)
0.004665
1.072668
1.016212
c(11)
0.003776
1.17145
1.169737
c(47)
0.003327
95.02657
NA
c(12)
0.008835
1235.916
4.601097
c(48)
0.021225
94.48058
1.093589
c(505)
0.000188
1.696676
1.607377
c(513)
0.00079
1.128173
1.071764
c(13)
0.019685
1392.005
NA
c(514)
0.000754
1.077272
1.023409
c(14)
0.024542
623.8674
1.638509
c(49)
2.81E-06
426.7166
NA
c(15)
0.016727
1.35002
1.347123
c(50)
1.05E-05
395.778
2.751647
c(16)
0.00631
364.5846
1.357284
c(51)
0.000234
3.754934
2.751647
c(17)
0.034858
1965.638
NA
c(52)
0.025272
1.796378
 
c(18)
0.030144
650.8176
2.390064
c(53)
0.016926
1.920122
 
c(19)
0.023574
1.422988
1.404814
c(515)
0.000178
1.170656
 
c(20)
0.011187
515.4273
1.918844
c(516)
0.000184
1.211256
 
c(21)
0.081562
8973.245
NA
c(54)
0.003218
19.90196
NA
c(22)
0.092117
5429.118
3.120946
c(55)
0.007158
20.39908
1.264573
c(23)
0.042363
2.079116
2.060516
c(56)
0.017469
1.220558
1.218342
c(24)
0.031891
1.948496
1.866357
c(517)
0.003526
1.147892
1.087476
c(25)
0.033425
2.002502
1.928123
c(57)
0.014686
248.5112
NA
c(26)
0.012829
1189.042
1.690041
c(58)
0.00772
281.5666
1.506779
c(27)
0.002979
389.7016
NA
c(59)
0.003002
1.016724
1.00456
c(28)
0.009449
388.3649
1.064145
c(60)
0.015966
4.954369
1.509934
c(29)
0.005972
1.198711
1.182468
c(61)
6.02E-06
47.60604
NA
c(506)
0.000171
1.178583
1.116553
c(62)
1.66E-04
23.38802
1.507298
c(30)
0.005762
1013.246
NA
c(63)
1.57E + 00
11.50596
1.668578
c(31)
0.027859
860.7738
1.847807
c(518)
2.77E-06
1.152835
1.092159
c(32)
0.019306
2.0286
2.028597
c(519)
2.94E-06
1.223618
1.159217
c(33)
0.003382
494.3642
1.101297
c(64)
0.006251
1.235811
 
c(507)
0.000142
1.385103
1.308153
c(520)
0.000222
1.133899
 
c(34)
0.003091
324.9721
NA
c(521)
0.000216
1.101912
 
c(35)
0.00348
292.1113
2.021579
c(65)
0.003105
18.95904
NA
c(36)
0.005765
95.10627
1.474381
c(66)
0.017978
19.27486
1.020607
c(508)
0.000506
2.661904
2.528809
c(522)
0.003492
1.066213
1.012902
c(509)
0.000219
1.151599
1.094019
c(523)
0.003497
1.067792
1.014402
c(37)
0.011343
177.5241
NA
c(67)
0.000826
3.416318
NA
c(38)
0.042122
285.9858
4.932777
c(68)
0.000602
3.868874
1.182485
    
c(524)
0.00545
1.252043
1.182485
The test Breusch–Pagan–Godfrey (Table 10) indicates high enough probabilities for the rejection of heteroskedasticity hypothesis.
Table 10
SyS1scr: heteroskedasticity test Breusch–Pagan–Godfrey
Dependent variable: d ( sca 1 )
Dependent variable: d ( sra 2 )
 F-statistic
0.901062
Prob. F(2.17)
0.4247
 F-statistic
1.017491
Prob. F(4.14)
0.4318
 Obs*R-squared
1.916936
Prob. Chi-Square(2)
0.3835
 Obs*R-squared
4.279439
Prob. Chi-Square(4)
0.3695
 Scaled explained SS
0.928978
Prob. Chi-Square(2)
0.6285
 Scaled explained SS
0.96349
Prob. Chi-Square(4)
0.9153
Dependent variable: d ( sca 2 )
Dependent variable: d ( sra 3 )
 F-statistic
0.493489
Prob. F(4.14)
0.7408
 F-statistic
0.610519
Prob. F(3.15)
0.6185
 Obs*R-squared
2.347896
Prob. Chi-Square(4)
0.6721
 Obs*R-squared
2.067521
Prob. Chi-Square(3)
0.5585
 Scaled explained SS
1.07891
Prob. Chi-Square(4)
0.8976
 Scaled explained SS
0.52206
Prob. Chi-Square(3)
0.914
Dependent variable: d ( sca 3 )
Dependent variable: d ( sra 4 )
 F-statistic
0.880908
Prob. F(3.14)
0.4746
 F-statistic
0.329585
Prob. F(3.16)
0.804
 Obs*R-squared
2.858248
Prob. Chi-Square(3)
0.414
 Obs*R-squared
1.16401
Prob. Chi-Square(3)
0.7616
 Scaled explained SS
2.466576
Prob. Chi-Square(3)
0.4814
 Scaled explained SS
0.798201
Prob. Chi-Square(3)
0.8499
Dependent variable: d ( sca 4 )
Dependent variable: d ( sra 5 HP )
 F-statistic
1.613982
Prob. F(5.13)
0.2249
 F-statistic
0.335166
Prob. F(2.16)
0.7201
 Obs*R-squared
7.277122
Prob. Chi-Square(5)
0.2008
 Obs*R-squared
0.76401
Prob. Chi-Square(2)
0.6825
 Scaled explained SS
7.487449
Prob. Chi-Square(5)
0.1868
 Scaled explained SS
0.343187
Prob. Chi-Square(2)
0.8423
Dependent variable: d ( sca 5 )
Dependent variable: d ( sra 5 HPd )
 F-statistic
0.757351
Prob. F(3.15)
0.5352
 F-statistic
0.651693
Prob. F(4.14)
0.6351
 Obs*R-squared
2.499355
Prob. Chi-Square(3)
0.4754
 Obs*R-squared
2.982437
Prob. Chi-Square(4)
0.5608
 Scaled explained SS
3.524105
Prob. Chi-Square(3)
0.3176
 Scaled explained SS
1.916603
Prob. Chi-Square(4)
0.7511
Dependent variable: d ( sca 6 )
Dependent variable: d ( sra 6 )
 F-statistic
0.498536
Prob. F(3.15)
0.6889
 F-statistic
0.541944
Prob. F(4.14)
0.7077
 Obs*R-squared
1.722675
Prob. Chi-Square(3)
0.6319
 Obs*R-squared
2.547519
Prob. Chi-Square(4)
0.6361
 Scaled explained SS
2.27106
Prob. Chi-Square(3)
0.5181
 Scaled explained SS
2.828426
Prob. Chi-Square(4)
0.5869
Dependent variable: d ( sca 7 )
Dependent variable: d ( sra 7 )
 F-statistic
0.776423
Prob. F(5.11)
0.5866
 F-statistic
0.082417
Prob. F(4.14)
0.9865
 Obs*R-squared
4.434583
Prob. Chi-Square(5)
0.4887
 Obs*R-squared
0.437113
Prob. Chi-Square(4)
0.9793
 Scaled explained SS
1.311754
Prob. Chi-Square(5)
0.9337
 Scaled explained SS
0.426564
Prob. Chi-Square(4)
0.9802
Dependent variable: d ( sca 8 )
Dependent variable: d ( sra 8 HP )
 F-statistic
1.183406
Prob. F(4.14)
0.3604
 F-statistic
1.320582
Prob. F(5.13)
0.3151
 Obs*R-squared
4.800931
Prob. Chi-Square(4)
0.3083
 Obs*R-squared
6.399829
Prob. Chi-Square(5)
0.2692
 Scaled explained SS
4.819883
Prob. Chi-Square(4)
0.3063
 Scaled explained SS
2.752073
Prob. Chi-Square(5)
0.7381
Dependent variable: d ( sca 9 )
Dependent variable: d ( sra 8 HPd )
 F-statistic
0.63052
Prob. F(5.12)
0.6804
 F-statistic
0.724598
Prob. F(5.13)
0.617
 Obs*R-squared
3.745019
Prob. Chi-Square(5)
0.5867
 Obs*R-squared
4.141061
Prob. Chi-Square(5)
0.5293
 Scaled explained SS
1.619852
Prob. Chi-Square(5)
0.8988
 Scaled explained SS
1.882761
Prob. Chi-Square(5)
0.8651
Dependent variable: d ( sca 10 )
Dependent variable: d ( sra 9 )
 F-statistic
0.928894
Prob. F(4.15)
0.4733
 F-statistic
0.298999
Prob. F(3.16)
0.8256
 Obs*R-squared
3.970571
Prob. Chi-Square(4)
0.41
 Obs*R-squared
1.061723
Prob. Chi-Square(3)
0.7863
 Scaled explained SS
2.66595
Prob. Chi-Square(4)
0.6152
 Scaled explained SS
0.863016
Prob. Chi-Square(3)
0.8343
Dependent variable: d ( sra 1 )
Dependent variable: d ( sra 10 l )
 F-statistic
0.476573
Prob. F(5.12)
0.7871
 F-statistic
1.355643
Prob. F(2.15)
0.2876
 Obs*R-squared
2.982131
Prob. Chi-Square(5)
0.7027
 Obs*R-squared
2.755483
Prob. Chi-Square(2)
0.2521
 Scaled explained SS
0.508079
Prob. Chi-Square(5)
0.9918
 Scaled explained SS
1.404621
Prob. Chi-Square(2)
0.4954
The correlogram of squared residuals was computed for five lags (Table 11). In most cases, Q-statistics are associated with relatively large p-values, which attest a weak serial correlation in the residuals.
Table 11
Correlogram of residuals squared—SyS1scr
Lag
Dependent variable: d ( sca 1 )
Dependent variable: d ( sca 8 )
Dependent variable: d ( sra 5 HP )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
−0.272
−0.272
1.7151
0.19
−0.257
−0.257
1.46
0.227
0.276
0.276
1.6847
0.194
2
−0.096
−0.184
1.9425
0.379
0.066
0
1.5608
0.458
−0.11
−0.201
1.9688
0.374
3
−0.035
−0.13
1.9746
0.578
−0.064
−0.051
1.6631
0.645
0.016
0.122
1.9751
0.578
4
0.164
0.107
2.7103
0.607
−0.091
−0.128
1.8818
0.757
−0.052
−0.134
2.046
0.727
5
−0.196
−0.148
3.8388
0.573
0.12
0.074
2.2944
0.807
−0.167
−0.102
2.8394
0.725
Lag
Dependent variable: d ( sca 2 )
Dependent variable: d ( sca 9 )
Dependent variable: d ( sra 5 HPd )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
−0.092
−0.092
0.1874
0.665
−0.087
−0.087
0.1621
0.687
0.033
0.033
0.0247
0.875
2
0.174
0.167
0.9021
0.637
−0.144
−0.152
0.6266
0.731
−0.106
−0.107
0.2871
0.866
3
−0.118
−0.093
1.2507
0.741
−0.101
−0.133
0.871
0.832
0.117
0.126
0.6284
0.89
4
0.047
0.004
1.31
0.86
−0.169
−0.228
1.6068
0.808
−0.143
−0.17
1.1734
0.882
5
−0.056
−0.018
1.3989
0.924
0.086
−0.003
1.8114
0.875
−0.259
−0.226
3.0863
0.687
Lag
Dependent variable: d ( sca 3 )
Dependent variable: d ( sca 10 )
Dependent variable: d ( sra 6 )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
−0.168
−0.168
0.5983
0.439
0.127
0.127
0.3738
0.541
−0.033
−0.033
0.0248
0.875
2
0.038
0.01
0.6304
0.73
0.004
−0.012
0.3743
0.829
0.286
0.285
1.9394
0.379
3
−0.044
−0.037
0.6771
0.879
0.171
0.175
1.1293
0.77
−0.238
−0.242
3.3536
0.34
4
−0.009
−0.023
0.6789
0.954
0.259
0.225
2.9779
0.562
−0.097
−0.202
3.6057
0.462
5
−0.198
−0.208
1.7687
0.88
−0.308
−0.394
5.763
0.33
0.004
0.173
3.6061
0.607
Lag
Dependent variable: d ( sca 4 )
Dependent variable: d ( sra 1 )
Dependent variable: d ( sra 7 )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
−0.022
−0.022
0.0109
0.917
−0.034
−0.034
0.0249
0.875
−0.109
−0.109
0.2637
0.608
2
−0.036
−0.037
0.0421
0.979
−0.147
−0.148
0.5104
0.775
0.081
0.07
0.4167
0.812
3
0.267
0.266
1.821
0.61
−0.224
−0.241
1.7165
0.633
−0.043
−0.027
0.4618
0.927
4
−0.151
−0.154
2.4276
0.658
0.172
0.135
2.4809
0.648
−0.178
−0.194
1.3069
0.86
5
−0.11
−0.1
2.7737
0.735
−0.206
−0.286
3.6588
0.6
0.008
−0.026
1.3088
0.934
Lag
Dependent variable: d ( sca 5 )
Dependent variable: d ( sra 2 )
Dependent variable: d ( sra 8 HP )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
0.083
0.083
0.1544
0.694
−0.05
−0.05
0.0559
0.813
−0.228
−0.228
1.1477
0.284
2
−0.177
−0.186
0.8918
0.64
−0.287
−0.29
1.9901
0.37
−0.085
−0.145
1.3186
0.517
3
−0.066
−0.035
1.0011
0.801
−0.03
−0.069
2.012
0.57
0.282
0.245
3.3084
0.346
4
−0.187
−0.22
1.9314
0.748
−0.192
−0.311
2.997
0.558
−0.224
−0.128
4.6405
0.326
5
0.222
0.262
3.3306
0.649
−0.182
−0.313
3.9447
0.557
0.061
0.039
4.7479
0.447
Lag
Dependent variable: d ( sca 6 )
Dependent variable: d ( sra 3 )
Dependent variable: d ( sra 8 HPd )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
−0.141
−0.141
0.4389
0.508
−0.024
−0.024
0.0131
0.909
−0.224
−0.224
1.1139
0.291
2
−0.159
−0.182
1.0301
0.597
−0.188
−0.189
0.8438
0.656
−0.194
−0.257
1.9937
0.369
3
−0.103
−0.164
1.2972
0.73
−0.394
−0.419
4.709
0.194
0.145
0.037
2.5173
0.472
4
0.066
−0.012
1.4131
0.842
0.051
−0.05
4.7777
0.311
0.068
0.077
2.6402
0.62
5
0.149
0.122
2.0468
0.843
0.017
−0.178
4.7854
0.443
−0.23
−0.17
4.1494
0.528
Lag
Dependent variable: d ( sca 7 )
Dependent variable: d ( sra 4 )
Dependent variable: d ( sra 9 )
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
AC
PAC
Q-statistic
Prob.
1
0.072
0.072
0.1057
0.745
−0.001
−0.001
4.00E-05
0.995
−0.056
−0.056
0.0733
0.787
2
−0.102
−0.108
0.3299
0.848
0.119
0.119
0.3466
0.841
0.161
0.158
0.7045
0.703
3
−0.221
−0.208
1.4564
0.692
−0.005
−0.004
0.3472
0.951
−0.284
−0.276
2.7994
0.424
4
−0.312
−0.312
3.8731
0.423
−0.017
−0.032
0.3555
0.986
0.37
0.367
6.5593
0.161
5
−0.298
−0.381
6.2633
0.281
0.141
0.144
0.9389
0.967
−0.084
−0.038
6.7672
0.239
Lag
  
Dependent variable: d ( sra 10 l )
        
AC
PAC
Q-statistic
Prob.
1
        
−0.042
−0.042
0.0377
0.846
2
        
0.015
0.013
0.0426
0.979
3
        
−0.022
−0.021
0.0547
0.997
4
        
−0.268
−0.27
1.899
0.754
5
        
0.455
0.467
7.6334
0.178
Concerning the stationarity of residuals, both unit root tests ADF and PP were applied again, in all available options for exogenous (Table 12). There were thus generated 132 values of the probability the respective residual has a unit root. Out of these, 76.52 % are placed under 0.05, and 10.61 % between 0.05–0.1.
Table 12
ADF and PP unit root tests of residuals SyS1scr
 
Null hypothesis: ressca 1 has a unit root
Null hypothesis: ressca 2 has a unit root
Null hypothesis: ressca 3 has a unit root
Null hypothesis: ressca 4 has a unit root
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
ADF, exogenous: none
−1.986552
0.0475
−5.140927
0
−4.403522
0.0002
−3.786799
0.0008
ADF, exogenous: constant
−1.948802
0.3045
−4.981806
0.0012
−4.268814
0.0047
−3.671733
0.0145
ADF, exogenous: constant, linear trend
−3.465446
0.0724
−4.908056
0.0059
−4.258263
0.019
−3.603718
0.0583
PP, exogenous: none
−3.405567
0.0018
−13.3349
0.0001
−4.409299
0.0002
−3.786799
0.0008
PP, exogenous: constant
−3.315973
0.0286
−16.20088
0
−4.274438
0.0046
−3.671733
0.0145
PP, exogenous: constant, linear trend
−3.424937
0.0777
−15.56681
0.0001
−4.277874
0.0184
−3.606573
0.058
 
Null hypothesis: ressca 5 has a unit root
Null hypothesis: ressca 6 has a unit root
Null hypothesis: ressca 7 has a unit root
Null hypothesis: ressca 8 has a unit root
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
ADF, exogenous: none
−5.658349
0
−3.995118
0.0005
−5.895841
0
−3.597347
0.0012
ADF, exogenous: constant
−5.487764
0.0004
−3.86399
0.0099
−5.639502
0.0004
−3.488259
0.021
ADF, exogenous: constant, linear trend
−5.309006
0.0026
−3.774645
0.0431
−5.697499
0.0017
−3.470132
0.0735
PP, exogenous: none
−5.658844
0
−3.99659
0.0005
−5.802776
0
−3.570019
0.0013
PP, exogenous: constant
−5.488494
0.0004
−3.865979
0.0098
−5.559396
0.0005
−3.42576
0.0238
PP, exogenous: constant, linear trend
−5.30975
0.0026
−3.775747
0.043
−5.697499
0.0017
−3.584896
0.0602
 
Null hypothesis: ressca 9 has a unit root
Null hypothesis: ressca 10 has a unit root
Null hypothesis: ressra 1 has a unit root
Null hypothesis: ressra 2 has a unit root
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
ADF, exogenous: none
−3.789794
0.0008
−5.27384
0
−3.016457
0.0049
−4.043831
0.0004
ADF, exogenous: constant
−3.663534
0.0155
−5.162812
0.0008
−2.900826
0.066
−3.951321
0.0083
ADF, exogenous: constant, linear trend
−3.646379
0.0559
−5.140881
0.0039
−2.8125
0.2119
−3.97919
0.0298
PP, exogenous: none
−3.76958
0.0009
−7.353143
0
−2.908989
0.0063
−4.043831
0.0004
PP, exogenous: constant
−3.635529
0.0164
−7.09582
0
−2.790106
0.0805
−3.951321
0.0083
PP, exogenous: constant, linear trend
−3.557692
0.0649
−7.493081
0
−2.681021
0.2547
−3.973131
0.0301
 
Null hypothesis: ressra 3 has a unit root
Null hypothesis: ressra 4 has a unit root
Null hypothesis: ressra 5 HP has a unit root
Null hypothesis: ressra 5 HPd has a unit root
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
ADF, exogenous: none
−3.46127
0.0017
−5.532511
0
−3.222773
0.0031
−2.361507
0.0218
ADF, exogenous: constant
−3.361322
0.027
−5.373084
0.0004
−3.091733
0.0465
−2.123058
0.2389
ADF, exogenous: constant, linear trend
−3.142646
0.1267
−4.837124
0.0061
−2.932113
0.1776
−2.265232
0.4268
PP, exogenous: none
−3.46127
0.0017
−5.913703
0
−1.834051
0.0646
−5.664019
0
PP, exogenous: constant
−3.361322
0.027
−5.70976
0.0002
−1.356726
0.5795
−5.853202
0.0002
PP, exogenous: constant, linear trend
−3.142646
0.1267
−9.865782
0
−1.714644
0.7022
−9.964217
0
 
Null hypothesis: ressra 6 has a unit root
Null hypothesis: ressra 7 has a unit root
Null hypothesis: ressa 8 HP has a unit root
Null hypothesis: ressra 8 HPd has a unit root
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
t-statistic
Prob.
ADF, exogenous: none
−3.720831
0.0009
−4.171027
0.0003
−2.832449
0.0074
−5.387255
0
ADF, exogenous: constant
−3.612433
0.0164
−3.94738
0.0089
−3.102695
0.0481
−5.243256
0.0006
ADF, exogenous: constant, linear trend
−3.505032
0.0692
−3.777624
0.0445
−2.922023
0.1835
−5.189448
0.0032
PP, exogenous: none
−3.709671
0.0009
−3.557824
0.0013
−2.757837
0.0087
−6.014966
0
PP, exogenous: constant
−3.598596
0.0168
−3.321521
0.0292
−2.660895
0.0999
−6.301019
0.0001
PP, exogenous: constant, linear trend
−3.489806
0.071
−2.902353
0.1844
−2.489547
0.3283
−8.353103
0
 
Null hypothesis: ressra 9 has a unit root
Null hypothesis: ressra 10 l has a unit root
  
t-statistic
Prob.
t-statistic
Prob.
    
ADF, exogenous: none
−2.725678
0.0093
−6.80313
0
    
ADF, exogenous: constant
−2.640708
0.1026
−6.617948
0.0001
    
ADF, exogenous: constant, linear trend
−2.683911
0.2527
−6.352981
0.0005
    
PP, exogenous: none
−2.732364
0.0091
−6.767128
0
    
PP, exogenous: constant
−2.648713
0.1012
−6.586823
0.0001
    
PP, exogenous: constant, linear trend
−2.715594
0.2416
−6.352981
0.0005
    
The above presented tests (for collinearity, heteroskedasticity, serial correlation, and stationarity of residuals) show that OLS could be acceptable to estimate the system SyS1scr.
4. The system SyS1scr has been solved using other four techniques: Weighted Least Squares (WLS), Seemingly Unrelated Regression (SUR), Generalised linear models (GLM), and Generalised Method of Moments (GMM). The obtained results are detailed in Statistical and Econometric Appendix.
The solution induced by Weighted Least Squares slightly ameliorates the standard errors, maintaining, however, the parameters of equations practically at the same level as OLS. The differences between Seemingly Unrelated Regression and OLS regarding estimators and coefficients of determination are also insignificant. The same conclusion is valid for the Generalised Linear Models (applied with bootstrap).
The Generalised Method of Moments was involved in variant HAC for the time series (Bartlett and Variable Newey–West). Despite the large number enough of trials, the results were inconclusive. First, in order to obtain a plausible solution, it was necessary to break SyS1scr into three sub-systems—SyS1scaG, SyS1sraG, and SyS1sra8G—which have been separately computed. Secondly, the algorithm did not work with dummies, or these were not introduced casually, but according to the specification test about outliers.
Briefly, the comparative analysis of different techniques suggests as acceptable OLS method. Nevertheless, a problem persists. According to Statistical and Econometric Appendix (System Residual Cross-Correlations—OLS), the disturbances of some relationships represented in SyS1scr are correlated. They reflect, at great extent, the indubitable fact of inter-industry linkages. Obviously, there must be a consistent solution of the question hereby discussed. It could result from a re-specification of the entire system by explicit inclusion in the equations of the factors inducing cross-correlations among input-output technical coefficients, and subsequently applying computational methods that avoid simultaneity effects. But such an approach should need further interdisciplinary research. Until then, I am reluctant to involve techniques which somehow mechanically constrict the cross-correlations of I-O coefficients. Consequently, for the present OLS will keep being involved in the succeeding steps of our approach.
5. Based on the previous system, the fitted sca j f and sra i f can be obtained, but not a ij f as such. To approximate these, the RAS technique was applied. During its half-century existence [42], this method has registered extended applications, including in recent researches [7, 18, 19, 21, 22, 25, 27]. Usually, the starting matrix for every t is the statistical matrix A t 1 , which is adjusted by successive bi-proportional corrections in dependence on exogenously given sectoral outputs. The applicability of such a method for an emergent economy such as in Romania has already been documented [13].
The present paper slightly modifies this procedure, using sca j f and sra i f as column and row restrictions in a RAS algorithm. The resulting technical coefficients (denoted as ra ij ) are relevant from the present research perspective. Notably, ra ij are calculated using the fitted sca j f and sra i f . The formulae, however, are based on the hypothesis that the respective original statistical series contain attractor points. Consequently, the analysis of the differences resra ij = a ij ra ij can be informative. Given the independency of these differences, the assumption that sca j f and sra i f include attractor points and that the derived ra ij contain such compatible points becomes plausible since both sca j and sra i represent simple summations of the corresponding a ij .
Consequently, we return to the BDS test. As in the previous application, the test was applied to both probabilities (normal and bootstrap) in three options related to the distance (fraction of pairs, standard deviations, and fraction of range) and in five dimensions (2, 3, 4, 5, and 6). For each resra ij , 30 p-values were again computed (as before). The distribution of all 3000 p-values is described in Fig. 11. Only one fifth of the p-values do not exceed 0.05. This proportion falls to 8 % in the case of the bootstrap method, which is more relevant for relatively short series.
For this reason, as a general approximation, the serial independence of resra ij differences was assumed. Consequently, the probability of attractor points in the data for a ij cannot be neglected.
6. Further on, the attractor points will be estimated based on the following additional assumptions:
• It is admitted that in the proximity of an attractor point, the values of the respective technical coefficients are relatively stable. In other words, first- and higher-order differences tend to disappear.
• In terms of level, the value of the technical coefficient coincides or is close to that of the attractor point. The importance of the presence of observations in level (I(0) problem) in econometric formulae has already been outlined.
• The attractor points are conceived at long-run levels. For large values of t, it is admitted that t 1 0 and t / ( t + 1 ) 1 .
The scheme containing the main econometric relationships will be adapted to these assumptions, the result being the algebraical expressions of attractors in the 9 types of specifications (Table 13) included in SyS1scr. Their symbols are given the prefix a: asca j and asra i .
Table 13
Algebraical attractor definitions
Variables (y)
Approximating formula
sca 1 , sra 2 , sra 4 , sra 9 , log ( sra 10 )
ay = a 0 / a 1
sca 8 , sca 10
ay = ( b 0 + b 2 ) / b 1
sca 2 , sra 3
ay = c 0 / c 1
sca 5 , sca 6 , sca 9
ay = ( d 0 + d 4 ) / d 1
sra 8
ay = e 0 / e 1
sca 7 , sra 5
ay = ( f 0 + f 5 ) / f 1
sra 1 , sra 6
ay = g 0 / g 1
sca 3
ay = h 0 / h 1
sca 4 , sra 7
ay = ( i 0 + i 3 ) / i 1 or = i 0 / i 1
Table 14 presents the approximated attractors for colsums ( asca j ) and rowsums ( asra i ) of the I-O coefficients. These estimations were included as column–row restrictions in a new RAS application concerning all a ij . This algorithm was applied on a matrix compounded by the average levels of the respective statistical coefficients (for the entire interval 1989–2009). Table 15 presents the so-obtained attractor points ( aa ij ).
Table 14
Attractor-points for the colsums and rowsums of technical coefficients
Symbol
Estimation
Symbol
Estimation
asca 1
0.488059
asra 1
0.508254
asca 2
0.633969
asra 2
0.546414
asca 3
0.904387
asra 3
0.674086
asca 4
0.603476
asra 4
0.389116
asca 5
0.566348
asra 5
0.467036
asca 6
0.5619
asra 6
0.564482
asca 7
0.722865
asra 7
1.337777
asca 8
0.536487
asra 8
0.130711
asca 9
0.438797
asra 9
0.37335
asca 10
0.47579
asra 10
0.687186
Table 15
Attractor-points for individual technical coefficients ( aa ij )
 
j
1
2
3
4
5
6
7
8
9
10
aa 1 j
0.233951
0.001173
0.000136
0.232187
0.034418
0.000132
0.000947
0.000367
0.000277
0.004665
aa 2 j
0.001076
0.173019
0.270478
0.001162
0.00058
0.006661
0.073396
0.015125
0.002156
0.002762
aa 3 j
0.024686
0.090712
0.288858
0.022381
0.030654
0.04102
0.095837
0.023173
0.033597
0.023168
aa 4 j
0.053107
0.0026
0.001616
0.213718
0.009814
0.002945
0.007421
0.004082
0.005101
0.088714
aa 5 j
0.008545
0.011228
0.003287
0.017918
0.290144
0.019729
0.021376
0.025626
0.009881
0.059303
aa 6 j
0.017634
0.084122
0.043601
0.011139
0.022303
0.176451
0.037253
0.062144
0.078011
0.031824
aa 7 j
0.086517
0.086553
0.165247
0.028473
0.076022
0.194198
0.371607
0.173607
0.094814
0.060737
aa 8 j
0.00491
0.004865
0.014924
0.002182
0.002516
0.003279
0.00486
0.07097
0.007305
0.0149
aa 9 j
0.013468
0.067402
0.026501
0.014494
0.020011
0.02745
0.028172
0.02357
0.120064
0.032218
aa 10 j
0.023246
0.085211
0.051111
0.03394
0.055662
0.066024
0.05111
0.114896
0.068838
0.137147

4 Conclusions

The analysis of Romanian I-O tables (based on surveys for 21 consecutive years) reveals new evidence in favour of the statement that the technical coefficients are volatile (illustrated by the relatively high standard deviation of corresponding series). This affects both determinations of I-O coefficients, either in volume ( ca ij ) or in value terms ( a ij ); the first is referred to as real volatility and the second as nominal volatility. Their dynamic pattern is similar, as confirmed by three measures: (a) the vectorial angle between the series a ij and ca ij , (b) the Galtung–Pearson correlation (also a cosine of the vectorial angle but between their deviations against the mean) and (c) the binary synchronisation degree.
To verify whether or not the I-O coefficients are serially correlated, the BDS procedure was used as a test covering a large variety of possible deviations from independence in the time data. Again, both forms of technical coefficients were studied. Generally, the serial correlation could not be statistically rejected. It is important to mention that this conclusion resulted from a relatively extended database.
Due to these two circumstances—high volatility and serial correlation—the possible presence of attractors in the technical coefficients series was taken into consideration. Such points would be flexibly interpreted not as unchangeable levels but rather as historical (contextually determined) phenomena. This approach is similar to the manner in which other authors regarded the natural rate of unemployment, for instance, as a weak attractor. Consequently, the evolution of I-O coefficients was conceived as an auto-regressive adaptive process, the differences between the actual coefficients and their long-run levels being influenced by the precedent deviations. Since the available series for sectoral coefficients are, as a rule, non-stationary, more aggregate indicators were employed in econometric analysis (column and row sums of I-O coefficients). The RAS technique was used to transform these into sectoral estimations.
The paper’s approach can be considered as an attempt to conciliate the assumption of I-O coefficients’ stability with their undisputable volatility.
Further research could improve on the econometric estimations through structural specifications of the technical coefficients, including their stable co-movements. Thus, more complex econometric specifications must be cautiously adopted, but based on a solid economic motivation.
The possible presence of attractors in the series of I-O coefficients also opens a large research space. A deeper investigation of their determinants—technologies, inter-industry linkages, institutional factors—would be interesting from both the theoretical and the applicative perspective. In addition, it would be relevant to clarify the temporal stability of the attractors themselves.

Statistical and Econometric Appendix

Table 16
Column-sums of the technical coefficients at current prices
Year
sca 1
sca 2
sca 3
sca 4
sca 5
sca 6
sca 7
sca 8
sca 9
sca 10
1989
0.491558
0.569253
0.889023
0.76225
0.552646
0.650026
0.812164
0.712277
0.420045
0.496334
1990
0.387324
0.668055
0.956937
0.729538
0.585299
0.622568
0.799226
0.633274
0.466569
0.454735
1991
0.494798
0.663253
0.820943
0.750352
0.675304
0.700584
0.75585
0.622815
0.454685
0.378095
1992
0.498327
0.676749
0.779253
0.737931
0.668211
0.700656
0.742198
0.584504
0.404153
0.346181
1993
0.475942
0.633793
0.722954
0.676025
0.623013
0.659749
0.711613
0.569026
0.393578
0.343785
1994
0.447545
0.625294
0.656678
0.648452
0.561198
0.593076
0.693557
0.513575
0.362277
0.334192
1995
0.431615
0.736073
0.637111
0.657541
0.58757
0.587836
0.740255
0.568219
0.423969
0.283543
1996
0.448299
0.889495
0.705545
0.662567
0.620109
0.639375
0.745313
0.574133
0.434749
0.325155
1997
0.448678
0.885471
0.718332
0.718407
0.614082
0.643057
0.756277
0.568766
0.434086
0.383843
1998
0.500438
0.73034
0.711868
0.671709
0.589266
0.618621
0.750819
0.552626
0.412593
0.373144
1999
0.451623
0.649843
0.710166
0.689681
0.626521
0.645794
0.730459
0.521393
0.410677
0.373031
2000
0.471773
0.620211
0.728855
0.675673
0.578638
0.610767
0.712465
0.551344
0.410928
0.376375
2001
0.464331
0.557372
0.767713
0.626716
0.568639
0.589786
0.727921
0.562682
0.412289
0.420057
2002
0.483088
0.550141
0.765831
0.629274
0.569244
0.582466
0.711277
0.545703
0.412843
0.415685
2003
0.46985
0.636448
0.790705
0.651569
0.586742
0.612382
0.755768
0.558792
0.424581
0.423453
2004
0.470463
0.65786
0.793915
0.654237
0.590792
0.605497
0.748681
0.554347
0.434705
0.423932
2005
0.511133
0.660908
0.793131
0.621407
0.583903
0.581869
0.73793
0.544117
0.431047
0.416438
2006
0.505062
0.665331
0.793829
0.623597
0.585979
0.585482
0.735709
0.543761
0.433134
0.428825
2007
0.547584
0.664387
0.789971
0.623635
0.579907
0.57569
0.716971
0.53191
0.420637
0.425441
2008
0.534281
0.641298
0.796951
0.626553
0.582379
0.579771
0.721889
0.533723
0.425995
0.439046
2009
0.521289
0.624123
0.795017
0.624762
0.592213
0.57092
0.704817
0.541346
0.440151
0.445557
Table 17
Row-sums of the technical coefficients at current prices
Year
sra 1
sra 2
sra 3
sra 4
sra 5
sra 6
sra 7
sra 8
sra 9
sra 10
1989
0.879487
0.715536
0.460816
0.424076
0.458559
1.204335
1.512107
0.130762
0.464525
0.105374
1990
0.719968
0.681193
0.595892
0.420332
0.509075
1.137719
1.616523
0.126245
0.382477
0.114103
1991
0.799707
0.519268
0.740962
0.30728
0.55112
1.009835
1.719619
0.122188
0.430851
0.115852
1992
0.758225
0.559776
0.802719
0.323097
0.549017
0.850436
1.632821
0.053936
0.447255
0.160882
1993
0.828402
0.483196
0.668033
0.307312
0.476423
0.608609
1.417821
0.066092
0.700265
0.253325
1994
0.7714
0.513863
0.655478
0.365699
0.488487
0.548466
1.37154
0.071654
0.453217
0.19604
1995
0.720338
0.52918
0.629171
0.344625
0.538629
0.64714
1.444648
0.135043
0.388398
0.276562
1996
0.639786
0.589832
0.583761
0.443051
0.593274
0.77149
1.494947
0.121243
0.492754
0.3146
1997
0.650862
0.624606
0.690994
0.457173
0.549141
0.631484
1.607715
0.100695
0.416869
0.441459
1998
0.701866
0.470438
0.650553
0.375155
0.545836
0.701163
1.429193
0.120339
0.450406
0.466476
1999
0.625048
0.294633
0.851485
0.378145
0.535579
0.65026
1.283071
0.102068
0.546984
0.541914
2000
0.589872
0.455738
0.705737
0.421593
0.504906
0.606695
1.440411
0.099778
0.298352
0.613946
2001
0.560844
0.515316
0.696012
0.423083
0.510963
0.516993
1.462513
0.114338
0.280583
0.616862
2002
0.550552
0.472552
0.796213
0.424217
0.501515
0.471378
1.415838
0.123366
0.281333
0.628588
2003
0.604588
0.565419
0.779686
0.417632
0.475566
0.521081
1.341116
0.167739
0.326985
0.710478
2004
0.628928
0.584544
0.695776
0.419551
0.467175
0.534748
1.390866
0.161495
0.34003
0.711316
2005
0.594292
0.563607
0.625771
0.390167
0.44902
0.562245
1.447483
0.1435
0.355017
0.750782
2006
0.574519
0.63664
0.584961
0.392571
0.425354
0.574501
1.388618
0.196368
0.353318
0.773859
2007
0.542797
0.630615
0.579161
0.414989
0.408277
0.577103
1.402135
0.185372
0.369498
0.766186
2008
0.610861
0.557296
0.590074
0.399415
0.389158
0.569906
1.423817
0.192557
0.376025
0.772777
2009
0.603559
0.541821
0.735107
0.381838
0.384324
0.589331
1.234232
0.244792
0.419811
0.725381
Table 18
System SYS1scr: Specification
d ( sca 1 ) = c ( 1 ) + c ( 2 ) sca 1 ( 1 ) + c ( 501 ) d 90
d ( sca 2 ) = c ( 3 ) + c ( 4 ) sca 2 ( 1 ) + c ( 5 ) d ( sca 2 ( 1 ) ) + c ( 502 ) d 95 + c ( 503 ) d 96
d ( sca 3 ) = c ( 6 ) + c ( 7 ) sca 3 ( 3 ) + c ( 8 ) / t + c ( 504 ) d 96
d ( sca 4 ) = c ( 9 ) + c ( 10 ) sca 4 ( 2 ) + c ( 11 ) d ( sca 4 , 2 ) + c ( 12 ) t / ( t + 1 ) + c ( 505 ) d 99
d ( sca 5 ) = c ( 13 ) + c ( 14 ) sca 5 ( 1 ) + c ( 15 ) d ( sca 5 ( 1 ) ) + c ( 16 ) t / ( t + 1 )
d ( sca 6 ) = c ( 17 ) + c ( 18 ) sca 6 ( 1 ) + c ( 19 ) d ( sca 6 ( 1 ) ) + c ( 20 ) t / ( t + 1 )
d ( sca 7 ) = c ( 21 ) + c ( 22 ) sca 7 ( 1 ) + c ( 23 ) d ( sca 7 ( 1 ) ) + c ( 24 ) d ( sca 7 ( 2 ) ) + c ( 25 ) d ( sca 7 ( 3 ) ) + c ( 26 ) t / ( t + 1 )
d ( sca 8 ) = c ( 27 ) + c ( 28 ) sca 8 ( 1 ) + c ( 29 ) d ( sca 8 , 2 ) + c ( 506 ) d 96
d ( sca 9 ) = c ( 30 ) + c ( 31 ) sca 9 ( 1 ) + c ( 32 ) d ( sca 9 ( 2 ) ) + c ( 33 ) t / ( t + 1 ) + c ( 507 ) d 96
d ( sca 10 ) = c ( 34 ) + c ( 35 ) t / ( t + 1 ) + c ( 36 ) sca 10 ( 1 ) + c ( 508 ) d 90 + c ( 509 ) d 95
d ( sra 1 ) = c ( 37 ) + c ( 38 ) sra 1 ( 1 ) + c ( 39 ) d ( sra 1 ( 2 ) ) + c ( 40 ) / t + c ( 510 ) d 98
d ( sra 2 ) = c ( 41 ) + c ( 42 ) sra 2 ( 1 ) + c ( 43 ) d ( sra 2 , 2 ) + c ( 511 ) d 99
d ( sra 3 ) = c ( 44 ) + c ( 45 ) sra 3 ( 2 ) + c ( 46 ) d ( sra 3 ( 1 ) ) + c ( 512 ) d 99
d ( sra 4 ) = c ( 47 ) + c ( 48 ) sra 4 ( 1 ) + c ( 513 ) d 96 + c ( 514 ) d 91
d ( sra 5 HP ) = c ( 49 ) + c ( 50 ) sra 5 HP ( 1 ) + c ( 51 ) d ( sra 5 HP ( 1 ) )
d ( sra 5 HPd ) = c ( 52 ) sra 5 HPd ( 1 ) + c ( 53 ) d ( sra 5 HPd ( 1 ) ) + c ( 515 ) d 93 + c ( 516 ) d 96
d ( sra 6 ) = c ( 54 ) + c ( 55 ) sra 6 ( 1 ) + c ( 56 ) d ( sra 6 , 2 ) + c ( 517 ) d 93
d ( sra 7 ) = c ( 57 ) + c ( 58 ) sra 7 ( 2 ) + c ( 59 ) d ( sra 7 , 2 ) + c ( 60 ) / t
d ( sra 8 HP ) = c ( 61 ) + c ( 62 ) sra 8 HP ( 1 ) + c ( 63 ) d ( sra 8 HP , 2 ) + c ( 518 ) d 93 + c ( 519 ) d 94
d ( sra 8 HPd ) = c ( 64 ) d ( sra 8 HPd , 2 ) + c ( 520 ) d 92 + c ( 521 ) d 95
d ( sra 9 ) = c ( 65 ) + c ( 66 ) sra 9 ( 1 ) + c ( 522 ) d 93 + c ( 523 ) d 99
d ( sra 10 l ) = c ( 67 ) + c ( 68 ) sra 10 l ( 3 ) + c ( 524 ) d 94
Table 19
SYS1scr estimated by different methods—sample 1990–2009: OLS—ordinary least squares
 
Coefficient
Std. error
t-statistic
Prob.
 
Coefficient
Std. error
t-statistic
Prob.
c(1)
0.283078
0.08625
3.282047
0.001142962
c(38)
−0.81444
0.205237
−3.96828
8.92E-05
c(2)
−0.58001
0.18071
−3.20961
0.001462231
c(39)
0.33183
0.156979
2.113855
0.035291504
c(501)
−0.10221
0.029494
−3.46533
0.000600906
c(40)
1.076357
0.330764
3.254154
0.001257343
c(3)
0.278431
0.06312
4.411133
1.40E-05
c(510)
0.086243
0.036361
2.371851
0.018283202
c(4)
−0.43919
0.0929
−4.72754
3.39E-06
c(41)
0.23365
0.103312
2.261582
0.02438575
c(5)
0.408362
0.119747
3.410206
0.00073125
c(42)
−0.42761
0.188762
−2.26531
0.024153256
c(502)
0.11044
0.033033
3.343364
0.000924647
c(43)
0.285218
0.122418
2.329865
0.020427225
c(503)
0.153027
0.035167
4.351465
1.81E-05
c(511)
−0.20212
0.050267
−4.02093
7.22E-05
c(6)
0.125699
0.044001
2.85674
0.004556706
c(44)
0.521483
0.142176
3.667871
0.000285804
c(7)
−0.13899
0.062557
−2.22178
0.026988791
c(45)
−0.77361
0.208359
−3.71289
0.00024117
c(8)
−0.24993
0.084743
−2.9493
0.003416579
c(46)
−0.50663
0.210056
−2.41191
0.016424787
c(504)
0.074459
0.017457
4.265162
2.62E-05
c(512)
0.193523
0.068301
2.833381
0.004894547
c(9)
0.924228
0.160358
5.76353
1.92E-08
c(47)
0.13412
0.057677
2.325375
0.020669034
c(10)
−0.75929
0.119904
−6.33248
8.05E-10
c(48)
−0.34468
0.145689
−2.36584
0.018577283
c(11)
0.47183
0.061448
7.678555
1.92E-13
c(513)
0.083091
0.028105
2.956484
0.003340097
c(12)
−0.46602
0.093994
−4.95792
1.15E-06
c(514)
−0.10229
0.027463
−3.72469
0.000230612
c(505)
0.03589
0.013722
2.615495
0.009326674
c(49)
0.013136
0.001677
7.831778
6.93E-14
c(13)
1.064914
0.140304
7.590058
3.43E-13
c(50)
−0.02813
0.003245
−8.66814
2.14E-16
c(14)
−1.18973
0.15666
−7.59436
3.34E-13
c(51)
1.08189
0.015285
70.78026
3.87E-199
c(15)
0.454757
0.129331
3.516215
0.000500165
c(52)
−0.83309
0.158971
−5.24052
2.89E-07
c(16)
−0.39111
0.079436
−4.92362
1.36E-06
c(53)
0.320171
0.130101
2.460931
0.014378755
c(17)
1.216451
0.186703
6.515444
2.77E-10
c(515)
−0.05209
0.013328
−3.90808
0.000113298
c(18)
−1.08361
0.17362
−6.24131
1.36E-09
c(516)
0.042189
0.013558
3.111817
0.002024883
c(19)
0.465948
0.153538
3.034749
0.002602261
c(54)
0.135167
0.056727
2.382743
0.017760431
c(20)
−0.60757
0.105767
−5.74438
2.13E-08
c(55)
−0.23945
0.084606
−2.83021
0.004942134
c(21)
1.5781
0.285591
5.525739
6.75E-08
c(56)
0.284088
0.132169
2.149434
0.032340176
c(22)
−1.82179
0.303507
−6.00245
5.21E-09
c(517)
−0.14994
0.059384
−2.52487
0.012051054
c(23)
0.765847
0.205822
3.720919
0.000233936
c(57)
1.052576
0.121187
8.685539
1.89E-16
c(24)
0.756215
0.17858
4.234588
2.99E-05
c(58)
−0.78681
0.087866
−8.95465
2.72E-17
c(25)
0.559842
0.182826
3.062164
0.002381463
c(59)
0.522016
0.054793
9.527016
3.95E-19
c(26)
−0.26119
0.113264
−2.30606
0.021738264
c(60)
0.773993
0.126356
6.12549
2.62E-09
c(27)
0.20165
0.054576
3.69482
0.000258233
c(61)
−0.02272
0.002453
−9.26173
2.86E-18
c(28)
−0.37587
0.097205
−3.86677
0.000133287
c(62)
0.17378
0.012884
13.48847
3.24E-33
c(29)
0.414938
0.077282
5.369165
1.51E-07
c(63)
7.618111
1.251823
6.085614
3.27E-09
c(506)
0.038061
0.013083
2.909294
0.003872887
c(518)
−0.00564
0.001664
−3.38751
0.00079222
c(30)
0.226448
0.075907
2.983219
0.003068886
c(519)
−0.00521
0.001714
−3.04001
0.002558513
c(31)
−1.23202
0.16691
−7.38132
1.33E-12
c(64)
0.394639
0.079062
4.991487
9.80E-07
c(32)
0.557367
0.138947
4.011371
7.50E-05
c(520)
−0.03994
0.014916
−2.67737
0.007798128
c(33)
0.314156
0.058156
5.401991
1.28E-07
c(521)
0.039854
0.014704
2.710374
0.007078646
c(507)
0.044864
0.011907
3.767881
0.000195553
c(65)
0.274047
0.055718
4.918437
1.39E-06
c(34)
−0.15911
0.055598
−2.86172
0.004487515
c(66)
−0.73402
0.134082
−5.47443
8.81E-08
c(35)
0.371868
0.058992
6.303751
9.50E-10
c(522)
0.307258
0.059092
5.199688
3.54E-07
c(36)
−0.44718
0.075925
−5.88968
9.68E-09
c(523)
0.153138
0.059135
2.589621
0.010041828
c(508)
0.091543
0.022503
4.067977
5.96E-05
c(67)
−0.07714
0.028744
−2.68356
0.00765829
c(509)
−0.06748
0.014801
−4.55935
7.28E-06
c(68)
−0.20561
0.024533
−8.38109
1.62E-15
c(37)
0.413941
0.106503
3.886657
0.00012328
c(524)
−0.62241
0.073826
−8.43065
1.15E-15
Table 20
SYS1scr estimated by different methods—sample 1990–2009: WLS—weighted least squares
 
Coefficient
Std. error
t-statistic
Prob.
 
Coefficient
Std. error
t-statistic
Prob.
c(1)
0.283078
0.079519
3.55988
0.000426566
c(38)
−0.81444
0.174418
−4.66946
4.43E-06
c(2)
−0.58001
0.166606
−3.48131
0.000567383
c(39)
0.33183
0.133406
2.487366
0.013371939
c(501)
−0.10221
0.027192
−3.75867
0.000202576
c(40)
1.076357
0.281095
3.829153
0.000154358
c(3)
0.278431
0.054182
5.138814
4.79E-07
c(510)
0.086243
0.030901
2.79095
0.00556695
c(4)
−0.43919
0.079745
−5.50742
7.43E-08
c(41)
0.23365
0.091796
2.545326
0.011380659
c(5)
0.408362
0.10279
3.97277
8.76E-05
c(42)
−0.42761
0.167719
−2.54953
0.011247182
c(502)
0.11044
0.028355
3.894901
0.000119343
c(43)
0.285218
0.108771
2.622176
0.00914958
c(503)
0.153027
0.030187
5.069303
6.73E-07
c(511)
−0.20212
0.044664
−4.5254
8.47E-06
c(6)
0.125699
0.038805
3.239239
0.001322776
c(44)
0.521483
0.126327
4.128053
4.66E-05
c(7)
−0.13899
0.05517
−2.51926
0.012240942
c(45)
−0.77361
0.185132
−4.17872
3.77E-05
c(8)
−0.24993
0.074736
−3.3442
0.000921969
c(46)
−0.50663
0.186639
−2.71451
0.006992757
c(504)
0.074459
0.015396
4.836239
2.05E-06
c(512)
0.193523
0.060687
3.188865
0.001567833
c(9)
0.924228
0.13765
6.714309
8.48E-11
c(47)
0.13412
0.051588
2.599849
0.009753476
c(10)
−0.75929
0.102925
−7.37712
1.37E-12
c(48)
−0.34468
0.130308
−2.64509
0.00856481
c(11)
0.47183
0.052746
8.945246
2.91E-17
c(513)
0.083091
0.025138
3.30545
0.001054529
c(12)
−0.46602
0.080684
−5.7758
1.80E-08
c(514)
−0.10229
0.024564
−4.16433
4.01E-05
c(505)
0.03589
0.011779
3.04696
0.002501691
c(49)
0.013136
0.001539
8.534482
5.52E-16
c(13)
1.064914
0.124663
8.542329
5.22E-16
c(50)
−0.02813
0.002978
−9.44589
7.25E-19
c(14)
−1.18973
0.139196
−8.54717
5.05E-16
c(51)
1.08189
0.014027
77.131
1.49E-210
c(15)
0.454757
0.114914
3.957369
9.32E-05
c(52)
−0.83309
0.14125
−5.89801
9.25E-09
c(16)
−0.39111
0.070581
−5.54135
6.22E-08
c(53)
0.320171
0.115598
2.769686
0.005934489
c(17)
1.216451
0.16589
7.33289
1.82E-12
c(515)
−0.05209
0.011843
−4.3984
1.48E-05
c(18)
−1.08361
0.154265
−7.02436
1.27E-11
c(516)
0.042189
0.012046
3.502234
0.000526139
c(19)
0.465948
0.136422
3.415497
0.000717678
c(54)
0.135167
0.050404
2.681688
0.007700416
c(20)
−0.60757
0.093977
−6.46509
3.72E-10
c(55)
−0.23945
0.075174
−3.18529
0.001586701
c(21)
1.5781
0.229729
6.869395
3.31E-11
c(56)
0.284088
0.117435
2.419109
0.016109025
c(22)
−1.82179
0.244141
−7.46203
7.91E-13
c(517)
−0.14994
0.052764
−2.84165
0.004772473
c(23)
0.765847
0.165563
4.62571
5.40E-06
c(57)
1.052576
0.107678
9.775252
6.02E-20
c(24)
0.756215
0.14365
5.264284
2.57E-07
c(58)
−0.78681
0.078071
−10.0781
5.87E-21
c(25)
0.559842
0.147065
3.806769
0.000168351
c(59)
0.522016
0.048685
10.7223
3.70E-23
c(26)
−0.26119
0.091109
−2.86681
0.004417774
c(60)
0.773993
0.11227
6.894012
2.84E-11
c(27)
0.20165
0.048492
4.158383
4.11E-05
c(61)
−0.02272
0.002105
−10.7896
2.16E-23
c(28)
−0.37587
0.086369
−4.35191
1.81E-05
c(62)
0.17378
0.011059
15.71359
9.33E-42
c(29)
0.414938
0.068666
6.042796
4.16E-09
c(63)
7.618111
1.074559
7.089526
8.47E-12
c(506)
0.038061
0.011624
3.274303
0.001173709
c(518)
−0.00564
0.001428
−3.94633
9.73E-05
c(30)
0.226448
0.064509
3.510344
0.000510922
c(519)
−0.00521
0.001471
−3.5415
0.000456213
c(31)
−1.23202
0.141846
−8.68557
1.89E-16
c(64)
0.394639
0.072553
5.439346
1.06E-07
c(32)
0.557367
0.118082
4.720168
3.51E-06
c(520)
−0.03994
0.013688
−2.9176
0.003773847
c(33)
0.314156
0.049423
6.356506
7.00E-10
c(521)
0.039854
0.013493
2.953561
0.003371041
c(507)
0.044864
0.010119
4.433653
1.27E-05
c(65)
0.274047
0.049836
5.498979
7.76E-08
c(34)
−0.15911
0.048149
−3.30443
0.001058255
c(66)
−0.73402
0.119926
−6.12059
2.69E-09
c(35)
0.371868
0.051088
7.278945
2.56E-12
c(522)
0.307258
0.052853
5.813428
1.47E-08
c(36)
−0.44718
0.065753
−6.80082
5.02E-11
c(523)
0.153138
0.052892
2.895285
0.00404538
c(508)
0.091543
0.019489
4.697295
3.90E-06
c(67)
−0.07714
0.026239
−2.9397
0.003521415
c(509)
−0.06748
0.012818
−5.26469
2.56E-07
c(68)
−0.20561
0.022396
−9.18103
5.19E-18
c(37)
0.413941
0.09051
4.573417
6.84E-06
c(524)
−0.62241
0.067394
−9.23532
3.48E-18
Table 21
SYS1scr estimated by different methods—sample 1990–2009: SUR—seemingly unrelated regression
 
Coefficient
Std. error
t-statistic
Prob.
 
Coefficient
Std. error
t-statistic
Prob.
c(1)
0.234957
0.058079
4.045498
6.53E-05
c(38)
−0.84056
0.100483
−8.36515
1.81E-15
c(2)
−0.48089
0.121424
−3.9604
9.20E-05
c(39)
0.34597
0.079175
4.369712
1.68E-05
c(501)
−0.11051
0.01443
−7.65865
2.19E-13
c(40)
1.137276
0.173371
6.559794
2.13E-10
c(3)
0.272854
0.020134
13.55169
1.87E-33
c(510)
0.09166
0.016681
5.494938
7.92E-08
c(4)
−0.42622
0.028895
−14.751
4.96E-38
c(41)
0.249617
0.026854
9.295474
2.23E-18
c(5)
0.400249
0.039501
10.13262
3.85E-21
c(42)
−0.44738
0.046709
−9.57791
2.69E-19
c(502)
0.120347
0.01254
9.597298
2.32E-19
c(43)
0.270023
0.025781
10.4738
2.66E-22
c(503)
0.147105
0.013128
11.2054
7.52E-25
c(511)
−0.20361
0.012093
−16.8361
3.88E-46
c(6)
0.115054
0.014094
8.163217
7.33E-15
c(44)
0.548312
0.045754
11.98381
1.22E-27
c(7)
−0.12727
0.019723
−6.45284
4.00E-10
c(45)
−0.81821
0.065265
−12.5368
1.15E-29
c(8)
−0.24232
0.034329
−7.05859
1.03E-11
c(46)
−0.54969
0.065482
−8.39457
1.47E-15
c(504)
0.082137
0.006536
12.56645
8.97E-30
c(512)
0.194547
0.029549
6.583848
1.85E-10
c(9)
0.943513
0.043286
21.79729
1.75E-65
c(47)
0.15916
0.025087
6.344446
7.51E-10
c(10)
−0.75699
0.029589
−25.5831
9.35E-80
c(48)
−0.40294
0.062287
−6.46904
3.64E-10
c(11)
0.475233
0.013396
35.47534
1.29E-113
c(513)
0.090953
0.014434
6.301505
9.62E-10
c(12)
−0.48929
0.029803
−16.4175
1.68E-44
c(514)
−0.08508
0.012256
−6.94239
2.11E-11
c(505)
0.036983
0.002789
13.25975
2.35E-32
c(49)
0.01349
0.000625
21.57141
1.30E-64
c(13)
1.06234
0.053497
19.85786
5.74E-58
c(50)
−0.02875
0.001192
−24.1101
2.82E-74
c(14)
−1.21682
0.053302
−22.8289
1.97E-69
c(51)
1.085785
0.008216
132.1608
6.73E-284
c(15)
0.466725
0.044263
10.54438
1.52E-22
c(52)
−0.86156
0.060809
−14.1682
8.52E-36
c(16)
−0.37179
0.042773
−8.6921
1.80E-16
c(53)
0.328044
0.049865
6.578703
1.91E-10
c(17)
1.251569
0.07414
16.88106
2.59E-46
c(515)
−0.05817
0.005475
−10.624
8.09E-23
c(18)
−1.13099
0.066292
−17.0608
5.13E-47
c(516)
0.037513
0.005639
6.65296
1.22E-10
c(19)
0.461616
0.053557
8.619101
3.03E-16
c(54)
0.140982
0.026324
5.355615
1.62E-07
c(20)
−0.61549
0.050982
−12.0727
5.80E-28
c(55)
−0.24846
0.035189
−7.0609
1.01E-11
c(21)
1.591889
0.090008
17.68604
1.82E-49
c(56)
0.280768
0.038032
7.382508
1.32E-12
c(22)
−1.83248
0.092471
−19.8168
8.30E-58
c(517)
−0.17261
0.023242
−7.42684
9.93E-13
c(23)
0.774811
0.067097
11.54767
4.56E-26
c(57)
0.98605
0.044398
22.2092
4.59E-67
c(24)
0.739849
0.054287
13.62841
9.59E-34
c(58)
−0.74137
0.031644
−23.4283
1.05E-71
c(25)
0.558427
0.053313
10.47448
2.64E-22
c(59)
0.523095
0.017136
30.52647
2.46E-97
c(26)
−0.268
0.04471
−5.99429
5.45E-09
c(60)
0.773597
0.058144
13.30473
1.59E-32
c(27)
0.197595
0.020551
9.614966
2.03E-19
c(61)
−0.0229
0.001283
−17.8516
4.08E-50
c(28)
−0.36951
0.035719
−10.3451
7.32E-22
c(62)
0.175333
0.00685
25.59751
8.27E-80
c(29)
0.400592
0.018888
21.20883
3.25E-63
c(63)
7.671487
0.548712
13.98089
4.41E-35
c(506)
0.038445
0.004267
9.009607
1.82E-17
c(518)
−0.0055
0.000613
−8.96842
2.46E-17
c(30)
0.213569
0.029681
7.195569
4.35E-12
c(519)
−0.00513
0.000533
−9.62612
1.87E-19
c(31)
−1.18993
0.056699
−20.9867
2.35E-62
c(64)
0.430947
0.030779
14.0012
3.69E-35
c(32)
0.545298
0.040457
13.47857
3.53E-33
c(520)
−0.03993
0.006948
−5.7465
2.10E-08
c(33)
0.308919
0.028288
10.92042
7.55E-24
c(521)
0.037305
0.00608
6.135315
2.48E-09
c(507)
0.046084
0.004433
10.39612
4.90E-22
c(65)
0.244369
0.023271
10.50116
2.14E-22
c(34)
−0.13306
0.025963
−5.12513
5.12E-07
c(66)
−0.67082
0.050755
−13.2168
3.41E-32
c(35)
0.351948
0.02466
14.27219
3.41E-36
c(522)
0.304342
0.029036
10.48162
2.50E-22
c(36)
−0.46841
0.030641
−15.2871
4.22E-40
c(523)
0.148176
0.021366
6.9352
2.21E-11
c(508)
0.089716
0.007458
12.02994
8.30E-28
c(67)
−0.08253
0.016711
−4.93861
1.26E-06
c(509)
−0.06953
0.005683
−12.2339
1.50E-28
c(68)
−0.21785
0.011922
−18.2732
9.07E-52
c(37)
0.425266
0.052871
8.043437
1.66E-14
c(524)
−0.64568
0.026648
−24.2303
9.97E-75
Table 22
SYS1scr estimated by different methods—sample 1990–2009: GLM—generalized linear models with bootstrap
 
Coefficient
Std. error
z
Prob.
 
Coefficient
Std. error
z
Prob.
c(1)
0.283078
0.082689
3.42
0.001
c(38)
−0.81444
0.188264
−4.33
0
c(2)
−0.58001
0.170839
−3.4
0.001
c(39)
0.33183
0.159535
2.08
0.038
c(501)
−0.10221
0.004737
−21.58
0
c(40)
1.076356
0.332231
3.24
0.001
c(3)
0.278431
0.101581
2.74
0.006
c(510)
0.086243
0.011943
7.22
0
c(4)
−0.43919
0.153461
−2.86
0.004
c(41)
0.23365
0.088917
2.63
0.009
c(5)
0.408363
0.140692
2.9
0.004
c(42)
−0.42761
0.163947
−2.61
0.009
c(502)
0.11044
0.006218
17.76
0
c(43)
0.285218
0.091688
3.11
0.002
c(503)
0.153027
0.014458
10.58
0
c(511)
−0.20212
0.015286
−13.22
0
c(6)
0.125699
0.041312
3.04
0.002
c(44)
0.521483
0.108545
4.8
0
c(7)
−0.13899
0.050457
−2.75
0.006
c(45)
−0.77361
0.158828
−4.87
0
c(8)
−0.24993
0.085994
−2.91
0.004
c(46)
−0.50663
0.175199
−2.89
0.004
c(504)
0.074459
0.005317
14
0
c(512)
0.193523
0.011274
17.17
0
c(9)
0.924228
0.094083
9.82
0
c(47)
0.13412
0.047279
2.84
0.005
c(10)
−0.75929
0.067526
−11.24
0
c(48)
−0.34468
0.118808
−2.9
0.004
c(11)
0.47183
0.047361
9.96
0
c(513)
0.083091
0.007286
11.4
0
c(12)
−0.46602
0.056969
−8.18
0
c(514)
−0.10229
0.004784
−21.38
0
c(505)
0.03589
0.004272
8.4
0
c(49)
0.013136
0.001949
6.74
0
c(13)
1.064914
0.167703
6.35
0
c(50)
−0.02813
0.003768
−7.46
0
c(14)
−1.18973
0.193828
−6.14
0
c(51)
1.08189
0.01169
92.55
0
c(15)
0.454757
0.165187
2.75
0.006
c(52)
−0.83309
0.153003
−5.44
0
c(16)
−0.39111
0.087032
−4.49
0
c(53)
0.320171
0.137497
2.33
0.02
c(17)
1.216451
0.209223
5.81
0
c(515)
−0.05209
0.005145
−10.12
0
c(18)
−1.08361
0.17854
−6.07
0
c(516)
0.042189
0.005872
7.18
0
c(19)
0.465948
0.172046
2.71
0.007
c(54)
0.135167
0.065899
2.05
0.04
c(20)
−0.60757
0.12657
−4.8
0
c(55)
−0.23945
0.111845
−2.14
0.032
c(21)
1.5781
0.291682
5.41
0
c(56)
0.284088
0.142332
2
0.046
c(22)
−1.82179
0.352457
−5.17
0
c(517)
−0.14994
0.029437
−5.09
0
c(23)
0.765847
0.237994
3.22
0.001
c(57)
1.052575
0.100791
10.44
0
c(24)
0.756215
0.238152
3.18
0.001
c(58)
−0.78681
0.075003
−10.49
0
c(25)
0.559842
0.191824
2.92
0.004
c(59)
0.522016
0.060821
8.58
0
c(26)
−0.26119
0.109698
−2.38
0.017
c(60)
0.773993
0.15599
4.96
0
c(27)
0.20165
0.037095
5.44
0
c(61)
−0.02272
0.001404
−16.18
0
c(28)
−0.37587
0.06611
−5.69
0
c(62)
0.173781
0.007403
23.47
0
c(29)
0.414938
0.064205
6.46
0
c(63)
7.618141
0.782133
9.74
0
c(506)
0.038061
0.004809
7.91
0
c(518)
−0.00564
0.000399
−14.12
0
c(30)
0.226448
0.115659
1.96
0.05
c(519)
−0.00521
0.000485
−10.75
0
c(31)
−1.23202
0.246907
−4.99
0
c(64)
0.394639
0.049193
8.02
0
c(32)
0.557367
0.151548
3.68
0
c(520)
−0.03994
0.003189
−12.52
0
c(33)
0.314156
0.064189
4.89
0
c(521)
0.039854
0.002782
14.32
0
c(507)
0.044864
0.006176
7.26
0
c(65)
0.274047
0.036869
7.43
0
c(34)
−0.15911
0.032982
−4.82
0
c(66)
−0.73402
0.096623
−7.6
0
c(35)
0.371868
0.0525
7.08
0
c(522)
0.307258
0.009443
32.54
0
c(36)
−0.44718
0.072451
−6.17
0
c(523)
0.153138
0.009668
15.84
0
c(508)
0.091543
0.018952
4.83
0
c(67)
−0.07714
0.01713
−4.5
0
c(509)
−0.06748
0.004226
−15.97
0
c(68)
−0.20561
0.019253
−10.68
0
c(37)
0.413941
0.095647
4.33
0
c(524)
−0.62241
0.030516
−20.4
0
Table 23
Comparative estimation output OLS–SUR
Equation: d ( sca 1 ) = c ( 1 ) + c ( 2 ) sca 1 ( 1 ) + c ( 501 ) d 90
OLS
SUR
R-squared
0.592041
Mean dependent var.
0.001486537
R-squared
0.582578
Mean dependent var.
0.001486537
Adjusted R-squared
0.544045
S.D. dependent var.
0.04237619
Adjusted R-squared
0.533469
S.D. dependent var.
0.04237619
S.E. of regression
0.028614
Sum squared resid.
0.013919204
S.E. of regression
0.028944
Sum squared resid.
0.014242074
Durbin–Watson stat.
1.538095
  
Durbin–Watson stat.
1.721237
  
Equation: d ( sca 2 ) = c ( 3 ) + c ( 4 ) sca 2 ( 1 ) + c ( 5 ) d ( sca 2 ( 1 ) ) + c ( 502 ) d 95 + c ( 503 ) d 96
OLS
SUR
R-squared
0.827101
Mean dependent var.
−0.00231224
R-squared
0.822768
Mean dependent var.
−0.00231224
Adjusted R-squared
0.777702
S.D. dependent var.
0.067510188
Adjusted R-squared
0.77213
S.D. dependent var.
0.067510188
S.E. of regression
0.03183
Sum squared resid.
0.014184143
S.E. of regression
0.032227
Sum squared resid.
0.014539665
Durbin–Watson stat.
2.754131
  
Durbin–Watson stat.
2.693471
  
Equation: d ( sca 3 ) = c ( 6 ) + c ( 7 ) sca 3 ( 3 ) + c ( 8 ) / t + c ( 504 ) d 96
OLS
SUR
R-squared
0.778591
Mean dependent var.
−0.00144036
R-squared
0.773913
Mean dependent var.
−0.00144036
Adjusted R-squared
0.731147
S.D. dependent var.
0.031713173
Adjusted R-squared
0.725466
S.D. dependent var.
0.031713173
S.E. of regression
0.016444
Sum squared resid.
0.003785497
S.E. of regression
0.016616
Sum squared resid.
0.003865477
Durbin–Watson stat.
2.002707
  
Durbin–Watson stat.
1.987606
  
Equation: d ( sca 4 ) = c ( 9 ) + c ( 10 ) sca 4 ( 2 ) + c ( 11 ) d ( sca 4 , 2 ) + c ( 12 ) t / ( t + 1 ) + c ( 505 ) d 96
OLS
SUR
R-squared
0.893072
Mean dependent var.
−0.00551455
R-squared
0.890453
Mean dependent var.
−0.00551455
Adjusted R-squared
0.862522
S.D. dependent var.
0.028411694
Adjusted R-squared
0.859154
S.D. dependent var.
0.028411694
S.E. of regression
0.010535
Sum squared resid.
0.001553663
S.E. of regression
0.010663
Sum squared resid.
0.00159172
Durbin–Watson stat.
1.833085
  
Durbin–Watson stat.
1.813972
  
Equation: d ( sca 5 ) = c ( 13 ) + c ( 14 ) sca 5 ( 1 ) + c ( 15 ) d ( sca 5 ( 1 ) ) + c ( 16 ) t / ( t + 1 )
OLS
SUR
R-squared
0.805431
Mean dependent var.
0.000363901
R-squared
0.801683
Mean dependent var.
0.000363901
Adjusted R-squared
0.766517
S.D. dependent var.
0.033923317
Adjusted R-squared
0.76202
S.D. dependent var.
0.033923317
S.E. of regression
0.016392
Sum squared resid.
0.004030354
S.E. of regression
0.016549
Sum squared resid.
0.004107978
Durbin–Watson stat.
2.597269
  
Durbin–Watson stat.
2.536249
  
Equation: d ( sca 6 ) = c ( 17 ) + c ( 18 ) sca 6 ( 1 ) + c ( 19 ) d ( sca 6 ( 1 ) ) + c ( 20 ) t / ( t + 1 )
OLS
SUR
R-squared
0.741118
Mean dependent var.
−0.00271833
R-squared
0.737032
Mean dependent var.
−0.00271833
Adjusted R-squared
0.689341
S.D. dependent var.
0.03293319
Adjusted R-squared
0.684438
S.D. dependent var.
0.03293319
S.E. of regression
0.018356
Sum squared resid.
0.005054087
S.E. of regression
0.0185
Sum squared resid.
0.005133851
Durbin–Watson stat.
1.930535
  
Durbin–Watson stat.
1.811626
  
Equation: d ( sca 7 ) = c ( 21 ) + c ( 22 ) sca 7 ( 1 ) + c ( 23 ) d ( sca 7 ( 1 ) ) + c ( 24 ) d ( sca 7 ( 2 ) ) + c ( 25 ) d ( sca 7 ( 3 ) ) + c ( 26 ) t / ( t + 1 )
OLS
SUR
R-squared
0.776545
Mean dependent var.
−0.00219888
R-squared
0.775659
Mean dependent var.
−0.00219888
Adjusted R-squared
0.674974
S.D. dependent var.
0.021803938
Adjusted R-squared
0.673686
S.D. dependent var.
0.021803938
S.E. of regression
0.012431
Sum squared resid.
0.001699731
S.E. of regression
0.012455
Sum squared resid.
0.001706466
Durbin–Watson stat.
2.45839
  
Durbin–Watson stat.
2.449675
  
Equation: d ( sca 8 ) = c ( 27 ) + c ( 28 ) sca 8 ( 1 ) + c ( 29 ) d ( sca 8 , 2 ) + c ( 506 ) d 96
OLS
SUR
R-squared
0.79341
Mean dependent var.
−0.00483833
R-squared
0.792092
Mean dependent var.
−0.00483833
Adjusted R-squared
0.752092
S.D. dependent var.
0.024203015
Adjusted R-squared
0.75051
S.D. dependent var.
0.024203015
S.E. of regression
0.012051
Sum squared resid.
0.002178319
S.E. of regression
0.012089
Sum squared resid.
0.002192212
Durbin–Watson stat.
1.725176
  
Durbin–Watson stat.
1.776138
  
Equation: d ( sca 9 ) = c ( 30 ) + c ( 31 ) sca 9 ( 1 ) + c ( 32 ) d ( sca 9 ( 2 ) ) + c ( 33 ) t / ( t + 1 ) + c ( 507 ) d 96
OLS
SUR
R-squared
0.846468
Mean dependent var.
−0.00080741
R-squared
0.845128
Mean dependent var.
−0.00080741
Adjusted R-squared
0.799227
S.D. dependent var.
0.022579243
Adjusted R-squared
0.797475
S.D. dependent var.
0.022579243
S.E. of regression
0.010117
Sum squared resid.
0.001330662
S.E. of regression
0.010161
Sum squared resid.
0.001342271
Durbin–Watson stat.
1.832536
  
Durbin–Watson stat.
1.928251
  
Equation: d ( sca 10 ) = c ( 34 ) + c ( 35 ) t / ( t + 1 ) + c ( 36 ) sca 10 ( 1 ) + c ( 508 ) d 90 + c ( 509 ) d 95
OLS
SUR
R-squared
0.848972
Mean dependent var.
−0.00253882
R-squared
0.846468
Mean dependent var.
−0.00253882
Adjusted R-squared
0.808698
S.D. dependent var.
0.031535026
Adjusted R-squared
0.805526
S.D. dependent var.
0.031535026
S.E. of regression
0.013793
Sum squared resid.
0.002853624
S.E. of regression
0.013907
Sum squared resid.
0.002900946
Durbin–Watson stat.
2.4873
  
Durbin–Watson stat.
2.432552
  
Equation: d ( sra 1 ) = c ( 37 ) + c ( 38 ) sra 1 ( 1 ) + c ( 39 ) d ( sra 1 ( 2 ) ) + c ( 40 ) / t + c ( 510 ) d 98
OLS
SUR
R-squared
0.611242
Mean dependent var.
−0.01089713
R-squared
0.609433
Mean dependent var.
−0.01089713
Adjusted R-squared
0.491625
S.D. dependent var.
0.047563903
Adjusted R-squared
0.489258
S.D. dependent var.
0.047563903
S.E. of regression
0.033913
Sum squared resid.
0.014951435
S.E. of regression
0.033992
Sum squared resid.
0.015021033
Durbin–Watson stat.
1.439341
  
Durbin–Watson stat.
1.431766
  
Equation: d ( sra 2 ) = c ( 41 ) + c ( 42 ) sra 2 ( 1 ) + c ( 43 ) d ( sra 2 , 2 ) + c ( 511 ) d 99
OLS
SUR
R-squared
0.777682
Mean dependent var.
−0.00733534
R-squared
0.773894
Mean dependent var.
−0.00733534
Adjusted R-squared
0.733218
S.D. dependent var.
0.089810856
Adjusted R-squared
0.728673
S.D. dependent var.
0.089810856
S.E. of regression
0.046388
Sum squared resid.
0.032277867
S.E. of regression
0.046782
Sum squared resid.
0.032827865
Durbin–Watson stat.
1.66777
  
Durbin–Watson stat.
1.64911
  
Equation: d ( sra 3 ) = c ( 44 ) + c ( 45 ) sra 3 ( 2 ) + c ( 46 ) d ( sra 3 ( 1 ) ) + c ( 512 ) d 99
OLS
SUR
R-squared
0.604261
Mean dependent var.
0.007327141
R-squared
0.601432
Mean dependent var.
0.007327141
Adjusted R-squared
0.525113
S.D. dependent var.
0.095697545
Adjusted R-squared
0.521718
S.D. dependent var.
0.095697545
S.E. of regression
0.065947
Sum squared resid.
0.065235376
S.E. of regression
0.066182
Sum squared resid.
0.065701731
Durbin–Watson stat.
1.611126
  
Durbin–Watson stat.
1.521897
  
Equation: d ( sra 4 ) = c ( 47 ) + c ( 48 ) sra 4 ( 1 ) + c ( 513 ) d 96 + c ( 514 ) d 91
OLS
SUR
R-squared
0.701614
Mean dependent var.
−0.00211187
R-squared
0.683711
Mean dependent var.
−0.00211187
Adjusted R-squared
0.645667
S.D. dependent var.
0.044451546
Adjusted R-squared
0.624407
S.D. dependent var.
0.044451546
S.E. of regression
0.02646
Sum squared resid.
0.011202251
S.E. of regression
0.027242
Sum squared resid.
0.011874394
Durbin–Watson stat.
2.497302
  
Durbin–Watson stat.
2.320523
  
Equation: d ( sra 5 HP ) = c ( 49 ) + c ( 50 ) sra 5 HP ( 1 ) + c ( 51 ) d ( sra 5 HP ( 1 ) )
OLS
SUR
R-squared
0.998586
Mean dependent var.
−0.00657374
R-squared
0.998573
Mean dependent var.
−0.00657374
Adjusted R-squared
0.998409
S.D. dependent var.
0.00887352
Adjusted R-squared
0.998394
S.D. dependent var.
0.00887352
S.E. of regression
0.000354
Sum squared resid.
2.00E-06
S.E. of regression
0.000356
Sum squared resid.
2.02E-06
Durbin–Watson stat.
0.584091
  
Durbin–Watson stat.
0.585266
  
Equation: d ( sra 5 HPd ) = c ( 52 ) sra 5 HPd ( 1 ) + c ( 53 ) d ( sra 5 HPd ( 1 ) ) + c ( 515 ) d 93 + c ( 516 ) d 96
OLS
SUR
R-squared
0.852908
Mean dependent var.
7.88E-06
R-squared
0.848174
Mean dependent var.
7.88E-06
Adjusted R-squared
0.82349
S.D. dependent var.
0.029321112
Adjusted R-squared
0.817809
S.D. dependent var.
0.029321112
S.E. of regression
0.012319
Sum squared resid.
0.00227626
S.E. of regression
0.012515
Sum squared resid.
0.002349518
Durbin–Watson stat.
1.956297
  
Durbin–Watson stat.
1.905226
  
Equation: d ( sra 6 ) = c ( 54 ) + c ( 55 ) sra 6 ( 1 ) + c ( 56 ) d ( sra 6 , 2 ) + c ( 517 ) d 93
OLS
SUR
R-squared
0.705175
Mean dependent var.
−0.02886253
R-squared
0.701184
Mean dependent var.
−0.02886253
Adjusted R-squared
0.64621
S.D. dependent var.
0.093185537
Adjusted R-squared
0.64142
S.D. dependent var.
0.093185537
S.E. of regression
0.055427
Sum squared resid.
0.046082199
S.E. of regression
0.055801
Sum squared resid.
0.046706118
Durbin–Watson stat.
1.764954
  
Durbin–Watson stat.
1.907709
  
Equation: d ( sra 7 ) = c ( 57 ) + c ( 58 ) sra 7 ( 2 ) + c ( 59 ) d ( sra 7 , 2 ) + c ( 60 ) / t
OLS
SUR
R-squared
0.920327
Mean dependent var.
−0.02012059
R-squared
0.918205
Mean dependent var.
−0.02012059
Adjusted R-squared
0.904393
S.D. dependent var.
0.108371317
Adjusted R-squared
0.901847
S.D. dependent var.
0.108371317
S.E. of regression
0.033509
Sum squared resid.
0.016842702
S.E. of regression
0.033952
Sum squared resid.
0.017291216
Durbin–Watson stat.
1.736261
  
Durbin–Watson stat.
1.701985
  
Equation: d ( sra 8 HP ) = c ( 61 ) + c ( 62 ) sra 8 HP ( 1 ) + c ( 63 ) d ( sra 8 HP , 2 ) + c ( 518 ) d 93 + c ( 519 ) d 94
OLS
SUR
R-squared
0.941453
Mean dependent var.
0.005926559
R-squared
0.941163
Mean dependent var.
0.005926559
Adjusted R-squared
0.924725
S.D. dependent var.
0.005647312
Adjusted R-squared
0.924352
S.D. dependent var.
0.005647312
S.E. of regression
0.001549
Sum squared resid.
3.36E-05
S.E. of regression
0.001553
Sum squared resid.
3.38E-05
Durbin–Watson stat.
1.30744
  
Durbin–Watson stat.
1.274754
  
Equation: d ( sra 8 HPd ) = c ( 64 ) d ( sra 8 HPd , 2 ) + c ( 520 ) d 92 + c ( 521 ) d 95
OLS
SUR
R-squared
0.806027
Mean dependent var.
0.000312728
R-squared
0.803115
Mean dependent var.
0.000312728
Adjusted R-squared
0.78178
S.D. dependent var.
0.029986054
Adjusted R-squared
0.778504
S.D. dependent var.
0.029986054
S.E. of regression
0.014008
Sum squared resid.
0.00313945
S.E. of regression
0.014112
Sum squared resid.
0.003186578
Durbin–Watson stat.
2.438696
  
Durbin–Watson stat.
2.477959
  
Equation: d ( sra 9 ) = c ( 65 ) + c ( 66 ) sra 9 ( 1 ) + c ( 522 ) d 93 + c ( 523 ) d 99
OLS
SUR
R-squared
0.774555
Mean dependent var.
−0.00223569
R-squared
0.769816
Mean dependent var.
−0.00223569
Adjusted R-squared
0.732284
S.D. dependent var.
0.110603027
Adjusted R-squared
0.726657
S.D. dependent var.
0.110603027
S.E. of regression
0.057227
Sum squared resid.
0.052399624
S.E. of regression
0.057826
Sum squared resid.
0.053501025
Durbin–Watson stat.
1.192039
  
Durbin–Watson stat.
1.327546
  
Equation: d ( sra 10 l ) = c ( 67 ) + c ( 68 ) sra 10 l ( 3 ) + c ( 524 ) d 94
OLS
SUR
R-squared
0.871203
Mean dependent var.
0.10191042
R-squared
0.867635
Mean dependent var.
0.10191042
Adjusted R-squared
0.85403
S.D. dependent var.
0.172691047
Adjusted R-squared
0.849986
S.D. dependent var.
0.172691047
S.E. of regression
0.065978
Sum squared resid.
0.065297402
S.E. of regression
0.066886
Sum squared resid.
0.067106068
Durbin–Watson stat.
2.849506
  
Durbin–Watson stat.
2.662251
  
Table 24
Generalized method of moments—time series (HAC): Kernel: Bartlett, bandwidth: Variable Newey–West (5), no prewhitening
SYS1scaG
d ( sca 1 ) = c ( 1 ) + c ( 2 ) sca 1 ( 1 ) @ sca 1 ( 1 )
d ( sca 2 ) = c ( 3 ) + c ( 4 ) sca 2 ( 1 ) + c ( 5 ) d ( sca 2 ( 1 ) ) @ sca 2 ( 1 ) d ( sca 2 ( 1 ) )
d ( sca 3 ) = c ( 6 ) + c ( 7 ) sca 3 ( 3 ) + c ( 8 ) / t @ sca 10 ( 3 ) 1 / t
d ( sca 4 ) = c ( 9 ) + c ( 10 ) sca 4 ( 2 ) + c ( 11 ) d ( sca 4 , 2 ) + c ( 12 ) t / ( t + 1 ) @ sca 6 ( 2 ) d ( sca 4 , 2 ) t / ( t + 1 )
d ( sca 5 ) = c ( 13 ) + c ( 14 ) sca 5 ( 1 ) + c ( 15 ) d ( sca 5 ( 1 ) ) + c ( 16 ) t / ( t + 1 ) @ sca 6 ( 1 ) d ( sca 6 ( 1 ) ) t / ( t + 1 )
d ( sca 6 ) = c ( 17 ) + c ( 18 ) sca 6 ( 1 ) + c ( 19 ) d ( sca 6 ( 1 ) ) + c ( 20 ) t / ( t + 1 ) @ sca 4 ( 1 ) d ( sca 5 ( 1 ) ) t / ( t + 1 )
d ( sca 7 ) = c ( 21 ) + c ( 22 ) sca 7 ( 1 ) + c ( 23 ) d ( sca 7 ( 1 ) ) + c ( 24 ) d ( sca 7 ( 2 ) ) + c ( 25 ) d ( sca 7 ( 3 ) ) + c ( 26 ) t / ( t + 1 ) @ sca 8 ( 1 ) d ( sca 7 ( 1 ) ) d ( sca 7 ( 2 ) ) d ( sca 7 ( 3 ) ) t / ( t + 1 )
d ( sca 8 ) = c ( 27 ) + c ( 28 ) sca 8 ( 1 ) + c ( 29 ) d ( sca 8 , 2 ) @ sca 7 ( 1 ) d ( sca 8 , 2 )
d ( sca 9 ) = c ( 30 ) + c ( 31 ) sca 9 ( 1 ) + c ( 32 ) d ( sca 9 ( 2 ) ) + c ( 33 ) t / ( t + 1 ) @ sca 9 ( 1 ) d ( sca 9 ( 2 ) ) t / ( t + 1 )
d ( sca 10 ) = c ( 34 ) + c ( 35 ) t / ( t + 1 ) + c ( 36 ) sca 10 ( 1 ) @ t / ( t + 1 ) sca 3 ( 1 )
SYS1sraG
d ( sra 1 ) = c ( 37 ) + c ( 38 ) sra 1 ( 1 ) + c ( 39 ) d ( sra 1 ( 2 ) ) + c ( 40 ) / t @ sra 10 ( 1 ) d ( sra 1 ( 2 ) ) 1 / t
d ( sra 2 ) = c ( 41 ) + c ( 42 ) sra 2 ( 1 ) + c ( 43 ) d ( sra 2 , 2 ) @ sra 3 ( 1 ) d ( sra 2 , 2 )
d ( sra 3 ) = c ( 44 ) + c ( 45 ) sra 3 ( 2 ) + c ( 46 ) d ( sra 3 ( 1 ) ) @ sra 2 ( 2 ) d ( sra 3 ( 1 ) )
d ( sra 4 ) = c ( 47 ) + c ( 48 ) sra 4 ( 1 ) @ sra 4 ( 1 )
d ( sra 5 HP ) = c ( 49 ) + c ( 50 ) sra 5 HP ( 1 ) + c ( 51 ) d ( sra 5 HP ( 1 ) ) @ sra 8 HP ( 1 ) d ( sra 8 HP ( 1 ) )
d ( sra 5 HPd ) = c ( 52 ) sra 5 HPd ( 1 ) + c ( 53 ) d ( sra 5 HPd ( 1 ) ) @ sra 5 HPd ( 1 ) d ( sra 5 ( 1 ) )
d ( sra 6 ) = c ( 54 ) + c ( 55 ) sra 6 ( 1 ) + c ( 56 ) d ( sra 6 , 2 ) @ sra 10 l ( 1 ) d ( sra 6 , 2 )
d ( sra 7 ) = c ( 57 ) + c ( 58 ) sra 7 ( 2 ) + c ( 59 ) d ( sra 7 , 2 ) + c ( 60 ) / t @ sra 7 ( 2 ) d ( sra 7 , 2 ) 1 / t
d ( sra 9 ) = c ( 65 ) + c ( 66 ) sra 9 ( 1 ) @ sra 9 ( 1 )
d ( sra 10 l ) = c ( 67 ) + c ( 68 ) sra 10 l ( 3 ) @ sra 10 ( 3 )
SYS1sra8G
d ( sra 8 HP ) = c ( 61 ) + c ( 62 ) sra 8 HP ( 1 ) + c ( 63 ) d ( sra 8 HP , 2 ) @ sca 1 ( 1 ) d ( sra 1 )
d ( sra 8 HPd ) = c ( 64 ) d ( sra 8 HPd , 2 ) @ d ( sra 8 )
 
Estimation
Coefficient
Std. error
t-statistic
Prob.
c(1)
0.306601
0.125989
2.43355
0.0161112
c(2)
−0.64008
0.280023
−2.2858
0.0236481
c(3)
0.306749
0.040223
7.626242
2.45E-12
c(4)
−0.4616
0.050503
−9.13994
3.75E-16
c(5)
0.582774
0.115473
5.046853
1.27E-06
c(6)
0.13037
0.028106
4.638562
7.51E-06
c(7)
−0.14457
0.042163
−3.42883
0.0007803
c(8)
−0.2129
0.056051
−3.79838
0.0002101
c(9)
0.940451
0.141303
6.65555
4.82E-10
c(10)
−0.78012
0.122989
−6.34302
2.45E-09
c(11)
0.540342
0.030012
18.00435
1.60E-39
c(12)
−0.46646
0.070064
−6.65759
4.77E-10
c(13)
1.086867
0.046148
23.55169
1.38E-52
c(14)
−1.22309
0.051193
−23.8916
2.48E-53
c(15)
0.492234
0.07655
6.430267
1.56E-09
c(16)
−0.39337
0.0287
−13.7063
2.39E-28
c(17)
1.01984
0.101599
10.03791
1.66E-18
c(18)
−0.8892
0.095385
−9.32216
1.26E-16
c(19)
0.457512
0.122083
3.747537
0.0002531
c(20)
−0.52278
0.058669
−8.91068
1.46E-15
c(21)
1.512662
0.228653
6.61553
5.95E-10
c(22)
−1.74819
0.253013
−6.90948
1.25E-10
c(23)
0.730626
0.163282
4.474613
1.49E-05
c(24)
0.729524
0.077765
9.381098
8.85E-17
c(25)
0.532158
0.139174
3.823693
0.0001914
c(26)
−0.24892
0.065536
−3.7982
0.0002102
c(27)
0.206372
0.052335
3.943296
0.0001223
c(28)
−0.38015
0.0913
−4.16373
5.23E-05
c(29)
0.343602
0.049807
6.898688
1.33E-10
c(30)
0.178478
0.045995
3.880364
0.000155
c(31)
−1.00173
0.120293
−8.32743
4.48E-14
c(32)
0.312532
0.117606
2.65744
0.0087153
c(33)
0.263697
0.032537
8.10445
1.62E-13
c(34)
−0.11243
0.05481
−2.0513
0.041954
c(35)
0.223479
0.040543
5.512165
1.48E-07
c(36)
−0.22669
0.066706
−3.39839
0.0008656
c(37)
0.410337
0.078538
5.224706
5.30E-07
c(38)
−0.79341
0.152393
−5.20636
5.77E-07
c(39)
0.246874
0.109319
2.258289
0.0252624
c(40)
1.014128
0.223294
4.54167
1.08E-05
c(41)
0.158335
0.081972
1.931566
0.0551585
c(42)
−0.3044
0.14473
−2.10325
0.0369891
c(42)
−0.3044
0.14473
−2.10325
0.0369891
c(43)
0.353333
0.085985
4.109225
6.29E-05
c(44)
0.607509
0.186953
3.249529
0.0014058
c(45)
−0.88958
0.272764
−3.26134
0.001352
c(46)
−0.59086
0.180956
−3.2652
0.0013348
c(47)
0.200071
0.023126
8.651512
4.78E-15
c(48)
−0.51659
0.051403
−10.0498
9.01E-19
c(49)
0.012438
0.001323
9.400312
5.06E-17
c(50)
−0.02672
0.002535
−10.5384
4.19E-20
c(51)
1.079729
0.012712
84.93893
2.99E-136
c(52)
−1.19794
0.103191
−11.6089
4.67E-23
c(53)
0.660945
0.10392
6.360122
1.97E-09
c(54)
0.175152
0.019104
9.168604
2.09E-16
c(55)
−0.31296
0.031561
−9.91593
2.08E-18
c(56)
0.292367
0.030034
9.734402
6.42E-18
c(57)
1.046782
0.020545
50.9516
1.23E-101
c(58)
−0.78373
0.015172
−51.6567
1.51E-102
c(59)
0.534862
0.046339
11.54236
7.15E-23
c(60)
0.779652
0.034143
22.83479
1.64E-52
c(61)
−0.01889
0.003623
−5.21494
9.04E-06
c(62)
0.152942
0.014253
10.73059
1.86E-12
c(63)
5.864809
2.511417
2.335259
2.56E-02
c(64)
0.805251
0.063548
12.67163
1.96E-14
c(65)
0.249173
0.044659
5.579505
9.93E-08
c(66)
−0.61859
0.08038
−7.69586
1.30E-12
c(67)
−0.03635
0.010982
−3.31009
0.0011496
c(68)
−0.13208
0.015079
−8.75877
2.51E-15
Table 25
System residual cross-correlations—OLS: ordered by variables, 5 lags
 
d ( sca 1 )
d ( sca 2 )
d ( sca 3 )
d ( sca 4 )
d ( sca 5 )
d ( sca 6 )
d ( sca 7 )
d ( sca 8 )
d ( sca 9 )
d ( sca 10 )
d ( sra 1 )
d ( sca 1 )
1
−0.20436
−0.08028
−0.091888
−0.1558
−0.32513
−0.09166
0.127159
0.126493
−0.1381
−0.102451
d ( sca 1 ( 1 ) )
0.238371
0.100513
0.069354
−0.188872
0.501609
0.197367
0.144698
−0.16862
0.007396
0.242583
0.369804
d ( sca 1 ( 2 ) )
0.464957
−0.00573
−0.20809
−0.126914
−0.1924
−0.47671
−0.413
−0.20746
0.469117
−0.27781
0.159137
d ( sca 1 ( 3 ) )
0.014023
−0.16512
0.282422
−0.381427
0.084076
−0.12379
0.256522
0.033792
0.141903
0.265038
0.27344
d ( sca 1 ( 4 ) )
0.080867
−0.15566
−0.19726
−0.163086
−0.19362
−0.4359
−0.38842
0.053464
0.283662
0.091934
0.07346
d ( sca 1 ( 5 ) )
0.048466
0.223342
0.019214
−0.201697
−0.06186
−0.10777
0.215485
−0.01232
−0.01762
0.143215
0.148988
d ( sca 2 )
−0.20436
1
−0.02033
0.280442
0.078604
0.169666
0.035075
−0.26527
−0.04301
0.00944
0.029148
d ( sca 2 ( 1 ) )
0.304251
−0.33059
0.244168
0.176977
−0.10405
−0.14067
0.231152
0.378946
0.388916
0.0737
0.130203
d ( sca 2 ( 2 ) )
0.180376
−0.30009
−0.21838
−0.249673
0.428553
0.164485
−0.12539
−0.12696
−0.24927
−0.02269
−0.100335
d ( sca 2 ( 3 ) )
0.08852
0.372942
−0.1118
0.285574
−0.12179
−0.05929
−0.41894
−0.28013
−0.01267
−0.12782
−0.207659
d ( sca 2 ( 4 ) )
0.008295
−0.18485
0.290198
−0.19912
0.042257
0.051865
0.328405
0.133748
0.051816
0.093589
0.054134
d ( sca 2 ( 5 ) )
−0.04955
−0.25392
−0.05879
−0.027027
−0.08283
−0.12925
−0.11605
−0.01391
−0.17007
0.006302
0.109683
d ( sca 3 )
−0.08028
−0.02033
1
0.308264
0.158787
0.323551
0.590183
0.708803
0.13217
0.640846
−0.180649
d ( sca 3 ( 1 ) )
0.337497
−0.43834
−0.06704
0.204933
−0.3463
−0.18626
−0.26524
0.377639
−0.27634
0.1118
0.04193
d ( sca 3 ( 2 ) )
0.03907
0.297628
−0.04003
0.024955
0.060329
0.089449
0.216249
−0.06979
−0.17868
−0.0111
0.161203
d ( sca 3 ( 3 ) )
0.034735
0.034321
−0.10186
−0.267631
−0.04657
0.06572
0.169739
−0.19723
0.436332
−0.44161
0.119385
d ( sca 3 ( 4 ) )
0.083949
0.18535
0.223897
−0.162403
0.026417
−0.16438
0.322092
0.048802
0.175681
0.129771
−0.011604
d ( sca 3 ( 5 ) )
0.398427
−0.26411
−0.03919
−0.058797
−0.35541
−0.48231
−0.19285
0.174301
0.121024
0.218617
0.015848
d ( sca 4 )
−0.09189
0.280442
0.308264
1
−0.0906
0.211281
−0.15044
0.382849
−0.24187
0.286144
−0.096679
d ( sca 4 ( 1 ) )
0.237643
−0.54796
0.065513
0.095888
0.034277
0.243114
0.108567
0.215664
−0.23957
−0.22748
−0.183252
d ( sca 4 ( 2 ) )
−0.25775
0.09267
−0.041
0.001857
0.254398
0.459795
0.011027
−0.3158
−0.29426
−0.31956
−0.312641
d ( sca 4 ( 3 ) )
0.060369
0.208651
0.431494
0.166593
−0.48511
−0.1802
0.095936
0.136077
0.145572
−0.05945
−0.242455
d ( sca 4 ( 4 ) )
−0.01631
−0.45796
0.391378
−0.170627
−0.18053
−0.16552
0.393599
0.541904
−0.05571
0.479824
0.123879
d ( sca 4 ( 5 ) )
0.308314
0.083025
−0.28778
−0.186627
−0.22081
−0.2977
−0.13306
0.018216
−0.01406
−0.07198
0.0013
d ( sca 5 )
−0.1558
0.078604
0.158787
−0.0906
1
0.710658
0.354184
−0.06044
0.215431
0.139468
0.058226
d ( sca 5 ( 1 ) )
0.23506
0.13743
−0.27551
0.392722
−0.32507
−0.13605
−0.58393
−0.36561
−0.11694
−0.44898
−0.160362
d ( sca 5 ( 2 ) )
−0.14596
−0.2944
0.416933
0.008684
0.124961
0.006619
0.231986
0.219797
−0.13243
0.37878
−0.011586
d ( sca 5 ( 3 ) )
0.037532
−0.45536
−0.25905
−0.291073
−0.17605
−0.10479
−0.39156
−0.10578
−0.06973
−0.32215
−0.329483
d ( sca 5 ( 4 ) )
−0.32546
0.563786
0.429299
0.129662
−0.04891
0.153143
0.298213
0.085797
−0.17367
0.334916
0.074596
d ( sca 5 ( 5 ) )
−0.09185
−0.3443
0.042503
0.222039
−0.35538
−0.21477
0.002511
0.424443
0.214301
0.138713
0.354686
d ( sca 6 )
−0.32513
0.169666
0.323551
0.211281
0.710658
1
0.451651
−0.01105
−0.20956
−0.02033
−0.202087
d ( sca 6 ( 1 ) )
0.043414
0.111258
0.020954
0.66825
−0.29507
0.015686
−0.33303
−0.01241
−0.1869
−0.23653
−0.198904
d ( sca 6 ( 2 ) )
0.007598
−0.45947
0.349134
−0.020629
−0.07793
0.050664
0.263848
0.239835
−0.25073
0.087027
−0.190373
d ( sca 6 ( 3 ) )
−0.07874
−0.16756
−0.07382
−0.241908
−0.06333
0.063685
−0.15592
−0.05828
−0.07023
−0.18899
−0.361577
d ( sca 6 ( 4 ) )
−0.01622
0.488009
0.41089
0.107069
−0.32783
−0.08124
0.356004
0.173416
−0.06044
0.211333
−0.006367
d ( sca 6 ( 5 ) )
0.080902
−0.32704
0.128471
−0.005854
−0.22099
−0.22411
0.24531
0.441717
0.176585
0.298198
0.466716
d ( sca 7 )
−0.09166
0.035075
0.590183
−0.150443
0.354184
0.451651
1
0.287952
0.075051
0.300115
0.04842
d ( sca 7 ( 1 ) )
0.239444
−0.03452
−0.38151
0.084055
−0.28759
−0.2851
−0.37584
−0.12573
−0.03451
−0.16027
0.228464
d ( sca 7 ( 2 ) )
0.157694
0.19669
0.046793
−0.069873
0.088277
−0.17645
0.146565
0.017491
0.159334
0.15294
0.102864
d ( sca 7 ( 3 ) )
0.162717
−0.23252
−0.27738
−0.383346
0.092196
0.021942
−0.0562
−0.2275
0.194938
−0.30508
−0.083403
d ( sca 7 ( 4 ) )
0.11452
0.428296
0.117604
−0.022638
0.109974
−0.08834
0.093916
−0.14617
−0.05
0.144818
−0.015269
d ( sca 7 ( 5 ) )
0.170686
−0.34892
0.056968
0.092562
−0.22715
−0.28749
−0.21879
0.188461
0.169256
0.221837
0.300966
d ( sca 8 )
0.127159
−0.26527
0.708803
0.382849
−0.06044
−0.01105
0.287952
1
0.174083
0.695733
−0.118307
d ( sca 8 ( 1 ) )
0.359221
−0.16507
−0.18538
0.093641
0.036319
0.233419
0.011879
0.15942
−0.38786
−0.07879
−0.014911
d ( sca 8 ( 2 ) )
0.011789
0.561056
−0.08789
0.253803
0.161084
0.264968
0.157299
−0.27697
−0.00863
−0.21218
0.211926
d ( sca 8 ( 3 ) )
0.227778
−0.18849
0.047901
−0.243131
−0.06513
−0.08946
0.215611
−0.10826
0.423988
−0.39761
0.022347
d ( sca 8 ( 4 ) )
0.145551
−0.1495
0.164158
−0.303299
0.01913
−0.21426
0.072109
0.009178
0.042069
0.161423
−0.188076
d ( sca 8 ( 5 ) )
0.371743
0.002318
0.031956
−0.10787
−0.3757
−0.49603
−0.24498
0.150834
0.098627
0.290866
−0.101475
d ( sca 9 )
0.126493
−0.04301
0.13217
−0.241865
0.215431
−0.20956
0.075051
0.174083
1
0.03095
0.19582
d ( sca 9 ( 1 ) )
0.152794
−0.03475
−0.11232
−0.214269
0.001097
−0.0703
0.001794
−0.09724
−0.11135
0.045365
0.001894
d ( sca 9 ( 2 ) )
0.163243
0.1315
−0.17428
0.180316
−0.06756
−0.32416
−0.20934
−0.03024
−0.04258
0.23071
0.032816
d ( sca 9 ( 3 ) )
0.254008
−0.16174
−0.23515
−0.451669
0.143816
0.030617
0.028699
−0.26846
0.058293
−0.26674
0.065711
d ( sca 9 ( 4 ) )
−0.27762
0.245495
−0.02308
0.058829
0.311047
0.139846
−0.06628
−0.25418
0.020193
0.073877
0.240799
d ( sca 9 ( 5 ) )
0.080926
−0.19668
0.075819
0.154405
−0.27322
−0.29693
−0.34279
0.134797
0.248776
0.002247
0.066301
d ( sca 10 )
−0.1381
0.00944
0.640846
0.286144
0.139468
−0.02033
0.300115
0.695733
0.03095
1
0.241824
d ( sca 10 ( 1 ) )
0.488922
−0.32373
−0.50933
−0.02184
−0.28367
−0.28645
−0.37907
0.059262
−0.09706
−0.25481
0.138613
d ( sca 10 ( 2 ) )
−0.30032
0.5107
−0.05599
−0.054073
0.533023
0.514324
0.352901
−0.37042
−0.05847
−0.09713
0.327759
d ( sca 10 ( 3 ) )
0.052918
−0.03322
−0.12229
0.087361
−0.15135
−0.13518
−0.22174
−0.15294
0.515574
−0.44955
−0.05172
d ( sca 10 ( 4 ) )
0.017396
−0.18244
0.314692
−0.149584
0.08688
−0.02754
0.245004
0.143241
−0.16334
0.267288
−0.252981
d ( sca 10 ( 5 ) )
0.164792
−0.21057
−0.17911
0.031792
−0.26818
−0.26656
−0.39649
0.032564
−0.15324
0.094664
−0.243106
d ( sra 1 )
−0.10245
0.029148
−0.18065
−0.096679
0.058226
−0.20209
0.04842
−0.11831
0.19582
0.241824
1
d ( sra 1 ( 1 ) )
−0.01562
−0.07957
−0.5937
−0.347242
0.026614
−0.37394
−0.37163
−0.32717
0.51043
−0.4135
0.279592
d ( sra 1 ( 2 ) )
−0.22807
0.207868
−0.05635
−0.277841
0.219646
0.161013
0.118702
−0.3078
0.163825
−0.15584
−0.275141
d ( sra 1 ( 3 ) )
0.032613
0.067573
0.019157
0.140028
−0.09389
−0.14785
−0.10516
0.04092
−0.07359
0.193097
−0.267478
d ( sra 1 ( 4 ) )
0.190533
−0.20374
−0.06083
0.022614
−0.01331
−0.09267
−0.027
0.02458
−0.38972
0.18656
0.059843
d ( sra 1 ( 5 ) )
−0.18016
−0.03542
−0.22848
0.006725
0.295864
0.212983
−0.30699
−0.21726
−0.01955
−0.08501
0.252188
d ( sra 2 )
−0.07831
0.32901
0.416388
0.063816
0.162032
0.129893
0.485695
0.429645
−0.01105
0.559134
−0.115176
d ( sra 2 ( 1 ) )
0.736849
−0.13907
−0.16066
0.178032
−0.24915
−0.29896
−0.06093
0.193442
−0.04055
−0.02107
0.004782
d ( sra 2 ( 2 ) )
0.188637
0.16553
−0.10458
−0.163716
0.548817
0.302653
0.104322
−0.2198
−0.00856
0.092487
0.417636
d ( sra 2 ( 3 ) )
0.206172
0.076853
−0.32452
0.031531
0.072747
−0.1541
−0.37742
−0.35384
0.386884
−0.4271
0.017178
d ( sra 2 ( 4 ) )
0.119296
−0.13247
0.324196
−0.264832
0.025224
−0.05166
0.192877
−0.0656
0.034185
0.034527
−0.075003
d ( sra 2 ( 5 ) )
−0.0593
−0.31902
0.047672
−0.002626
−0.12295
−0.28542
−0.37138
0.206344
0.070294
0.345249
−0.037706
d ( sra 3 )
−0.25228
0.075665
0.063403
0.239771
−0.11273
−0.07825
−0.25651
0.337649
−0.19897
0.358662
0.152756
d ( sra 3 ( 1 ) )
−0.00212
0.038102
0.041641
0.061075
−0.24545
0.092911
0.259878
0.15256
0.122733
−0.28139
−0.003856
d ( sra 3 ( 2 ) )
−0.24681
0.200018
0.129231
−0.076733
0.22319
0.372671
0.478427
0.018211
0.068009
−0.05022
0.127689
d ( sra 3 ( 3 ) )
0.267123
0.092183
−0.08774
0.196836
−0.30694
−0.31462
−0.05399
0.041215
0.135565
−0.12267
−0.164458
d ( sra 3 ( 4 ) )
0.328631
−0.11757
0.029419
−0.355134
0.078781
−0.04592
0.254064
−0.00151
−0.02458
0.087049
−0.125362
d ( sra 3 ( 5 ) )
0.274028
0.148488
−0.25478
−0.189916
0.091188
−0.14807
−0.09332
−0.25605
−0.00147
−0.04562
−0.021609
d ( sra 4 )
−0.15118
0.456694
0.180554
0.403007
−0.41297
−0.1513
−0.18561
0.056756
−0.37189
0.202098
−0.169645
d ( sra 4 ( 1 ) )
0.358795
−0.46871
0.412758
0.068594
−0.29112
−0.3238
0.289124
0.651837
0.129606
0.350978
0.032522
d ( sra 4 ( 2 ) )
0.000777
−0.10651
−0.23706
−0.369005
0.348545
0.343085
−0.00448
−0.10075
−0.09287
−0.08452
0.165805
d ( sra 4 ( 3 ) )
−0.00525
0.740731
−0.03365
0.410241
−0.12344
−0.08055
−0.03193
−0.15598
0.195578
−0.11234
0.095176
d ( sra 4 ( 4 ) )
0.222947
−0.43336
0.171436
−0.231282
−0.09752
−0.09078
0.374575
0.166814
0.225279
−0.04849
0.166346
d ( sra 4 ( 5 ) )
0.095831
−0.08573
−0.25757
−0.271589
0.264268
−0.08594
−0.19759
−0.1584
−0.02162
−0.00048
−0.196851
d ( sra 5 HP )
−0.15832
−0.041
−0.08973
−0.484778
−0.45387
−0.36986
0.281651
−0.15548
0.019681
−0.15794
0.012781
d ( sra 5 HP ( 1 ) )
−0.01183
0.162322
−0.00436
−0.47444
−0.24246
−0.37893
0.297076
0.050355
0.268908
0.150439
0.072113
d ( sra 5 HP ( 2 ) )
0.23112
0.242049
−0.11534
−0.196278
−0.07548
−0.30124
0.155821
0.116057
0.241715
0.281613
0.298523
d ( sra 5 HP ( 3 ) )
0.319503
0.185394
−0.36963
−0.052495
0.248699
−0.12211
−0.02377
−0.10274
0.170498
0.091223
0.398505
d ( sra 5 HP ( 4 ) )
0.273866
0.119377
−0.4419
−0.090921
0.424209
0.083386
−0.21322
−0.4489
0.181489
−0.30057
0.165622
d ( sra 5 HP ( 5 ) )
0.057535
0.03265
−0.09783
0.00062
0.362275
0.122477
−0.2713
−0.3741
0.121691
−0.17591
−0.102379
d ( sra 5 HPd )
−0.02582
−0.65912
−0.06508
−0.196108
0.296115
0.237845
0.073186
0.237649
0.087111
−0.16249
−0.122776
d ( sra 5 HPd ( 1 ) )
−0.31994
0.40589
−0.11559
0.132954
0.248179
0.562101
−0.08343
−0.41851
−0.35515
−0.38314
−0.394828
d ( sra 5 HPd ( 2 ) )
−0.13342
0.202133
0.489677
0.576155
−0.37648
−0.04846
0.095292
0.299402
0.029764
0.203793
−0.090327
d ( sra 5 HPd ( 3 ) )
0.072693
−0.72256
0.058956
−0.219541
−0.03798
−0.03037
0.187078
0.346583
−0.21928
0.070762
−0.128232
d ( sra 5 HPd ( 4 ) )
−0.02532
0.312753
−0.15893
−0.031589
−0.02192
0.118887
−0.11456
−0.25496
−0.25743
−0.18744
−0.202893
d ( sra 5 HPd ( 5 ) )
−0.08591
0.334021
0.3183
0.16489
−0.14448
0.03136
0.232126
0.187184
0.301052
0.155588
0.191555
d ( sra 6 )
0.079354
0.105344
0.085949
−0.270728
0.454158
0.329718
0.313739
0.043965
0.505304
−0.09948
−0.135169
d ( sra 6 ( 1 ) )
0.057229
0.2963
−0.00753
0.486099
0.230269
0.189335
−0.16484
−0.00869
−0.1936
0.244362
0.054956
d ( sra 6 ( 2 ) )
0.353631
−0.28772
−0.18509
0.330146
−0.03243
−0.17142
−0.34132
0.004231
−0.17732
−0.03542
−0.048348
d ( sra 6 ( 3 ) )
−0.09813
−0.26149
−0.1811
−0.36198
0.454508
0.433039
−0.09523
−0.42312
−0.19465
−0.37987
−0.224681
d ( sra 6 ( 4 ) )
−0.31228
0.303426
0.269713
0.254556
−0.11445
0.075851
−0.17497
−0.15269
−0.02812
−0.06903
−0.192689
d ( sra 6 ( 5 ) )
−0.16875
−0.44392
0.554227
0.190321
−0.42338
−0.21782
0.083623
0.613343
−0.00496
0.444755
0.105625
d ( sra 7 )
0.285423
0.153645
0.143524
0.634831
−0.09618
0.112987
0.146996
0.272394
−0.4718
0.262607
−0.135284
d ( sra 7 ( 1 ) )
0.320828
−0.20743
−0.16797
0.059214
0.217958
0.17851
−0.07996
−0.06827
−0.14212
−0.12321
0.214895
d ( sra 7 ( 2 ) )
−0.08702
0.085241
−0.17459
−0.072173
0.364089
0.277448
−0.14387
−0.39749
0.099808
−0.40776
−0.076371
d ( sra 7 ( 3 ) )
0.004763
0.013737
0.364363
0.0467
−0.25108
−0.09011
0.0092
−0.01181
0.120599
−0.1006
−0.228426
d ( sra 7 ( 4 ) )
−0.07155
−0.41422
0.372133
−0.032225
−0.19991
−0.22603
0.030383
0.494039
−0.04042
0.511155
−0.065801
d ( sra 7 ( 5 ) )
0.182252
−0.02457
−0.1602
−0.12583
−0.26709
−0.21686
−0.06897
0.118497
−0.20834
0.033663
−0.094111
d ( sra 8 HP )
0.085464
0.030686
0.262081
−0.010163
−0.29173
0.030023
0.471341
0.251369
−0.10184
−0.00868
−0.154089
d ( sra 8 HP ( 1 ) )
0.274697
0.120757
0.065064
−0.205745
−0.2182
−0.17924
0.373161
0.113165
0.109703
0.020486
0.102649
d ( sra 8 HP ( 2 ) )
0.411478
0.160664
−0.07155
−0.29882
−0.08653
−0.30926
0.253718
0.003069
0.297683
0.05078
0.247511
d ( sra 8 HP ( 3 ) )
0.493465
0.126676
−0.18657
−0.377422
0.063066
−0.32715
0.094591
−0.12208
0.376869
0.028276
0.268989
d ( sra 8 HP ( 4 ) )
0.470091
0.126699
−0.21652
−0.323866
0.157509
−0.31042
−0.05351
−0.21045
0.328319
0.05358
0.248759
d ( sra 8 HP ( 5 ) )
0.401725
0.018312
−0.19042
−0.26463
0.159213
−0.29005
−0.18311
−0.21577
0.269841
0.062981
0.241184
d ( sra 8 HPd )
−0.06692
0.062992
−0.0988
−0.371353
−0.12033
−0.08903
−0.10758
0.036451
0.194614
−0.01726
0.116522
d ( sra 8 HPd ( 1 ) )
−0.05089
0.297822
0.170832
0.114387
0.115237
0.036297
0.392667
0.185869
0.139719
0.155716
0.097207
d ( sra 8 HPd ( 2 ) )
0.251565
−0.11526
−0.03377
0.082948
−0.13808
−0.05859
−0.05829
0.075424
0.108538
−0.01701
0.298923
d ( sra 8 HPd ( 3 ) )
−0.04804
0.073139
−0.21511
0.024383
0.415487
0.078338
−0.12938
−0.02349
0.141897
0.097919
−0.020138
d ( sra 8 HPd ( 4 ) )
0.349684
0.044513
−0.25963
−0.137283
−0.17559
−0.03271
−0.00773
−0.44355
−0.17222
−0.56495
−0.38048
d ( sra 8 HPd ( 5 ) )
−0.15138
0.050534
0.33543
−0.104596
0.245597
0.116929
0.201668
−0.03033
−0.00679
0.337691
0.177253
d ( sra 9 )
0.08446
0.008764
−0.38077
−0.371384
0.382518
0.120217
−0.01789
−0.17715
0.186736
−0.0629
0.293941
d ( sra 9 ( 1 ) )
−0.15351
0.458711
−0.32607
0.37837
0.375252
0.183448
−0.27746
−0.3461
0.014992
−0.06336
0.153266
d ( sra 9 ( 2 ) )
0.107692
−0.23826
−0.08948
0.1436
0.109855
0.079366
−0.23061
−0.16105
0.03125
−0.26202
−0.146382
d ( sra 9 ( 3 ) )
−0.31079
−0.28508
0.003284
0.031958
0.383384
0.347673
−0.22564
−0.1667
−0.33379
−0.01879
−0.36931
d ( sra 9 ( 4 ) )
−0.13573
−0.00072
0.16302
0.301034
−0.30773
0.00209
−0.34016
−0.02619
−0.31772
−0.08653
−0.419996
d ( sra 9 ( 5 ) )
−0.48367
−0.24377
0.462731
0.178846
−0.07878
0.238764
0.213926
0.404048
−0.26742
0.368062
0.098698
d ( sra 10 l )
−0.2292
0.638249
0.231459
0.20436
0.023671
−0.01401
0.334653
−0.13729
0.13404
0.244634
0.22337
d ( sra 10 l ( 1 ) )
0.24777
−0.4541
−0.21768
−0.327155
−0.42188
−0.49401
−0.07242
0.057867
0.259296
−0.12013
0.292055
d ( sra 10 l ( 2 ) )
−0.09093
0.098661
−0.22868
−0.365858
0.393825
−0.02645
0.090334
−0.18047
−0.04548
0.119218
−0.011345
d ( sra 10 l ( 3 ) )
0.203709
0.283232
−0.178
0.02977
−0.22002
−0.13695
−0.29067
−0.24384
0.223085
−0.20417
−0.027343
d ( sra 10 l ( 4 ) )
−0.12836
0.032327
0.16951
0.014689
0.393341
0.117687
0.252462
0.169338
0.028096
0.413244
0.251756
d ( sra 10 l ( 5 ) )
0.253035
−0.32093
−0.41142
0.075446
−0.14543
−0.18154
−0.4442
−0.23226
−0.14782
−0.3671
−0.049664
 
d ( sra 2 )
d ( sra 3 )
d ( sra 4 )
d ( sra 5 HP )
d ( sra 5 HPd )
d ( sra 6 )
d ( sra 7 )
d ( sra 8 HP )
d ( sra 8 HPd )
d ( sra 9 )
d ( sra 10 l )
d ( sca 1 )
−0.07831
−0.25228
−0.15118
−0.158318
−0.02582
0.079354
0.285423
0.085464
−0.06692
0.08446
−0.229203
d ( sca 1 ( 1 ) )
0.097945
0.0482
−0.07295
−0.146672
−0.15985
−0.1196
−0.08818
−0.03681
0.067278
0.043284
0.154748
d ( sca 1 ( 2 ) )
−0.34973
−0.02838
0.09049
−0.029424
−0.22289
−0.12419
−0.31167
−0.12925
0.162567
−0.15148
0.024616
d ( sca 1 ( 3 ) )
0.084228
−0.04724
−0.05481
0.210956
−0.07715
−0.07036
−0.31506
0.017017
0.01644
−0.05721
0.097095
d ( sca 1 ( 4 ) )
−0.07144
0.228974
0.05124
0.12321
−0.12584
−0.06605
−0.20605
−0.04243
0.194919
0.008565
−0.056827
d ( sca 1 ( 5 ) )
0.124835
0.039175
−0.08646
0.133063
−0.15383
0.076409
−0.00838
0.040436
0.161872
0.215898
0.2403
d ( sca 2 )
0.32901
0.075665
0.456694
−0.040997
−0.65912
0.105344
0.153645
0.030686
0.062992
0.008764
0.638249
d ( sca 2 ( 1 ) )
0.10868
−0.53255
−0.18414
−0.122499
0.256324
0.306209
0.199611
−0.05724
−0.08137
0.08935
−0.203069
d ( sca 2 ( 2 ) )
0.013987
0.061978
−0.18274
−0.216002
0.229629
−0.01081
0.051019
−0.1867
−0.35028
0.245706
−0.366553
d ( sca 2 ( 3 ) )
−0.35637
−0.00214
0.098332
−0.169734
−0.4158
−0.18574
0.050899
−0.12663
0.012026
−0.26852
0.366927
d ( sca 2 ( 4 ) )
0.216882
−0.11317
0.091679
0.034743
0.264836
0.005449
−0.26437
−0.04193
0.421731
0.001076
−0.239444
d ( sca 2 ( 5 ) )
−0.18353
0.177483
0.127219
0.044708
−0.05792
−0.19559
0.145028
−0.00563
−0.43747
−0.18195
−0.075049
d ( sca 3 )
0.416388
0.063403
0.180554
−0.089731
−0.06508
0.085949
0.143524
0.262081
−0.0988
−0.38077
0.231459
d ( sca 3 ( 1 ) )
−0.02418
0.469753
0.196491
−0.019875
0.117831
−0.40434
0.250785
0.317378
0.082579
−0.14398
−0.438173
d ( sca 3 ( 2 ) )
−0.11355
0.424394
−0.16791
0.23579
−0.03364
−0.38413
0.03065
0.456515
−0.0578
−0.27306
0.429048
d ( sca 3 ( 3 ) )
−0.01613
−0.264
−0.06481
0.401786
0.047155
0.228623
−0.42741
0.400917
0.476245
−0.04767
−0.019793
d ( sca 3 ( 4 ) )
0.486833
−0.13583
0.329994
0.358289
−0.37877
0.033506
0.028983
0.286014
−0.35856
−0.18029
0.335851
d ( sca 3 ( 5 ) )
−0.00515
−0.20317
−0.1109
0.182116
−0.22434
−0.04082
0.1892
0.113151
−0.07886
−0.03202
0.024452
d ( sca 4 )
0.063816
0.239771
0.403007
−0.484778
−0.19611
−0.27073
0.634831
−0.01016
−0.37135
−0.37138
0.20436
d ( sca 4 ( 1 ) )
−0.28171
0.041168
−0.37079
−0.130185
0.718676
−0.21472
0.033156
0.181865
−0.05537
−0.14038
−0.525919
d ( sca 4 ( 2 ) )
−0.1138
0.220612
0.178432
0.181758
−0.00579
−0.2889
−0.13854
0.36178
−0.1249
−0.47087
0.070968
d ( sca 4 ( 3 ) )
−0.01622
0.004938
0.420171
0.341752
−0.40714
−0.2252
−0.13546
0.432412
0.098847
−0.63244
0.35905
d ( sca 4 ( 4 ) )
0.464676
0.22782
0.151514
0.458121
0.167775
−0.23979
−0.01918
0.504918
0.137787
−0.25036
−0.171814
d ( sca 4 ( 5 ) )
−0.06191
0.37974
−0.06886
0.271561
−0.16462
−0.09666
0.092159
0.371715
0.019235
0.011359
0.115555
d ( sca 5 )
0.162032
−0.11273
−0.41297
−0.453874
0.296115
0.454158
−0.09618
−0.29173
−0.12033
0.382518
0.023671
d ( sca 5 ( 1 ) )
−0.38677
−0.24102
0.384828
−0.277756
−0.39636
−0.17928
0.194264
−0.23387
−0.22735
−0.18964
−0.028236
d ( sca 5 ( 2 ) )
0.043123
0.040996
−0.0801
0.0087
0.263921
−0.36651
−0.10821
−0.0847
−0.18618
−0.33976
0.016384
d ( sca 5 ( 3 ) )
−0.3589
0.17244
−0.0263
0.095189
0.247906
−0.07271
−0.27503
0.004712
0.252476
−0.08627
−0.496284
d ( sca 5 ( 4 ) )
0.176766
0.385643
0.336651
0.082239
−0.45401
−0.14597
−0.01517
0.152767
0.08226
−0.19872
0.568706
d ( sca 5 ( 5 ) )
0.014761
0.11912
−0.01958
0.132788
0.253974
−0.03964
0.03961
0.20567
0.250637
−0.02899
−0.230897
d ( sca 6 )
0.129893
−0.07825
−0.1513
−0.369857
0.237845
0.329718
0.112987
0.030023
−0.08903
0.120217
−0.014012
d ( sca 6 ( 1 ) )
−0.16841
0.051495
0.514253
−0.185112
−0.22836
−0.39488
0.30153
0.087423
−0.31523
−0.5148
0.039792
d ( sca 6 ( 2 ) )
−0.10676
0.052973
−0.15756
0.226842
0.377722
−0.41952
−0.05354
0.309544
−0.23811
−0.49254
−0.1261
d ( sca 6 ( 3 ) )
−0.06388
0.310719
0.13436
0.310119
0.064513
−0.16086
−0.30976
0.357552
0.318767
−0.29439
−0.190585
d ( sca 6 ( 4 ) )
0.285213
0.213673
0.444347
0.327732
−0.52563
−0.1494
0.092266
0.454588
0.12593
−0.34457
0.545547
d ( sca 6 ( 5 ) )
0.228302
0.092621
−0.0601
0.265123
0.162037
−0.031
0.076704
0.349219
0.169983
0.019928
−0.136917
d ( sca 7 )
0.485695
−0.25651
−0.18561
0.281651
0.073186
0.313739
0.146996
0.471341
−0.10758
−0.01789
0.334653
d ( sca 7 ( 1 ) )
−0.02676
0.04869
0.269347
0.071889
−0.2942
−0.13777
0.17377
0.115181
−0.05978
0.044077
−0.11327
d ( sca 7 ( 2 ) )
0.037535
0.004428
−0.25855
0.102196
−0.04824
−0.09311
−0.03223
0.056444
−0.14476
−0.04721
0.375386
d ( sca 7 ( 3 ) )
0.033886
−0.3842
−0.14107
0.121012
0.171691
0.31667
−0.22715
−0.00847
0.381931
0.249328
−0.362341
d ( sca 7 ( 4 ) )
0.224285
−0.04498
0.322795
−0.086105
−0.49427
0.006126
0.166687
−0.16657
−0.32036
−0.01848
0.401431
d ( sca 7 ( 5 ) )
−0.2365
−0.16203
−0.16989
−0.169962
0.02927
−0.00948
0.031775
−0.24617
0.096719
0.07202
−0.172233
d ( sca 8 )
0.429645
0.337649
0.056756
−0.15548
0.237649
0.043965
0.272394
0.251369
0.036451
−0.17715
−0.137293
d ( sca 8 ( 1 ) )
−0.03382
0.365135
−0.151
−0.098143
0.221054
−0.12781
0.349827
0.384802
0.016063
0.127698
−0.301964
d ( sca 8 ( 2 ) )
−0.0674
0.12283
0.029676
0.092756
−0.23873
−0.22615
0.056232
0.378243
−0.01238
−0.2742
0.530402
d ( sca 8 ( 3 ) )
0.017779
−0.45875
−0.01778
0.359213
0.108108
0.100357
−0.32979
0.307245
0.07598
−0.21614
−0.089528
d ( sca 8 ( 4 ) )
0.265218
−0.09611
0.202911
0.346314
−0.29281
−0.11125
−0.05343
0.214273
−0.37149
−0.27541
0.125107
d ( sca 8 ( 5 ) )
0.044942
0.081743
0.089474
0.152889
−0.37781
−0.1319
0.017042
0.083201
0.282033
−0.08535
0.15169
d ( sca 9 )
−0.01105
−0.19897
−0.37189
0.019681
0.087111
0.505304
−0.4718
−0.10184
0.194614
0.186736
0.13404
d ( sca 9 ( 1 ) )
0.318379
−0.22835
0.151821
0.083159
−0.22676
0.144506
0.100764
−0.01539
−0.0851
0.289535
−0.113401
d ( sca 9 ( 2 ) )
0.013285
−0.02623
−0.01853
−0.074619
−0.22911
−0.18804
0.336636
−0.16244
−0.24021
−0.05045
0.296039
d ( sca 9 ( 3 ) )
−0.18592
−0.30942
−0.36513
−0.139908
0.292599
0.296359
−0.24543
−0.31337
0.391863
0.467798
−0.345843
d ( sca 9 ( 4 ) )
0.00726
0.008928
0.21825
−0.240694
−0.24771
0.04476
−0.01173
−0.374
−0.20949
0.058564
0.187814
d ( sca 9 ( 5 ) )
−0.41298
−0.04915
−0.13202
−0.24877
0.025019
0.005361
−0.12468
−0.35133
−0.08365
0.01196
−0.100343
d ( sca 10 )
0.559134
0.358662
0.202098
−0.157936
−0.16249
−0.09948
0.262607
−0.00868
−0.01726
−0.0629
0.244634
d ( sca 10 ( 1 ) )
−0.36929
0.250502
−0.28903
−0.161556
0.318366
−0.07809
0.169501
−0.00761
0.197592
0.311848
−0.470723
d ( sca 10 ( 2 ) )
−0.0028
0.066644
−0.21296
−0.020151
−0.03134
0.05954
−0.12519
0.058352
−0.02085
0.119419
0.417576
d ( sca 10 ( 3 ) )
−0.16012
−0.41303
0.092482
0.055553
−0.04077
0.2161
−0.23038
−0.0256
0.030666
−0.11245
−0.074739
d ( sca 10 ( 4 ) )
0.319199
−0.15146
0.08775
0.150782
−0.04271
−0.08564
0.072694
0.053473
−0.43175
−0.14805
0.033512
d ( sca 10 ( 5 ) )
−0.12908
0.079282
0.03721
0.025779
−0.09907
−0.1883
0.150928
−0.00789
0.12376
−0.11494
−0.116078
d ( sra 1 )
−0.11518
0.152756
−0.16965
0.012781
−0.12278
−0.13517
−0.13528
−0.15409
0.116522
0.293941
0.22337
d ( sra 1 ( 1 ) )
−0.33635
−0.03786
−0.40671
0.119535
0.236144
0.151012
−0.4757
−0.23958
0.035667
0.313858
−0.104958
d ( sra 1 ( 2 ) )
0.162166
−0.50079
−0.13919
0.15302
−0.12889
0.454542
−0.17178
−0.1218
−0.06471
0.23144
0.173329
d ( sra 1 ( 3 ) )
0.342347
−0.32313
0.308599
−0.136183
−0.24022
0.150532
0.311779
−0.28498
−0.06191
0.119177
−0.005468
d ( sra 1 ( 4 ) )
−0.10857
−0.09032
−0.13461
−0.33239
0.121002
−0.06416
0.388701
−0.4075
−0.22939
0.237796
−0.182338
d ( sra 1 ( 5 ) )
−0.45085
0.196124
−0.27762
−0.47143
0.243733
0.048441
−0.20148
−0.51487
0.172722
0.295845
−0.211465
d ( sra 2 )
1
0.030164
0.438573
0.171358
−0.22642
0.210584
0.255294
0.313154
0.143494
0.041935
0.171932
d ( sra 2 ( 1 ) )
−0.04973
−0.22338
−0.13163
−0.16893
−0.09669
0.108995
0.670526
0.080135
−0.33518
0.147036
−0.076845
d ( sra 2 ( 2 ) )
−0.0163
0.021786
−0.34026
−0.307464
0.068539
0.053522
−0.11668
−0.19331
0.153725
0.374897
0.029755
d ( sra 2 ( 3 ) )
−0.26009
−0.20463
0.076031
−0.125592
−0.07453
0.007591
−0.19706
−0.19917
0.01282
−0.11255
−0.012497
d ( sra 2 ( 4 ) )
−0.02958
−0.30905
0.013483
0.069898
−0.11415
−0.00011
−0.18876
−0.09883
−0.22982
−0.13804
0.050658
d ( sra 2 ( 5 ) )
0.008323
0.260646
0.166973
0.002629
−0.0615
−0.22636
−0.12104
−0.11059
0.138516
−0.16977
−0.157162
d ( sra 3 )
0.030164
1
0.275984
−0.018535
0.049662
−0.5456
−0.12461
0.178616
0.267248
−0.26453
−0.019089
d ( sra 3 ( 1 ) )
−0.20129
0.135411
−0.24323
0.305687
0.211418
0.045877
−0.0469
0.550416
0.203491
−0.16523
0.094283
d ( sra 3 ( 2 ) )
0.443198
−0.00108
0.114955
0.348859
−0.01479
0.153171
−0.10052
0.509521
0.066668
−0.00023
0.133623
d ( sra 3 ( 3 ) )
0.121566
−0.21513
0.150263
0.308979
−0.31341
−0.0765
0.317179
0.383068
−0.42148
−0.29896
0.28412
d ( sra 3 ( 4 ) )
0.272485
−0.30306
−0.20954
0.2288
0.043924
0.090901
−0.01018
0.186627
0.123455
0.124888
−0.037447
d ( sra 3 ( 5 ) )
0.17381
−0.12419
0.189972
0.023547
−0.26149
0.030916
0.112395
−0.06446
0.088067
0.072421
0.060998
d ( sra 4 )
0.438573
0.275984
1
0.137411
−0.64517
−0.43054
0.232439
0.204685
0.041332
−0.49042
0.223361
d ( sra 4 ( 1 ) )
−0.06016
0.065703
−0.31055
0.082684
0.319416
−0.10513
0.223418
0.234059
−0.15133
−0.22399
−0.068496
d ( sra 4 ( 2 ) )
0.014433
0.358652
−0.21687
−0.005038
0.233364
0.118637
−0.27813
0.157501
0.427963
0.375911
−0.346767
d ( sra 4 ( 3 ) )
0.043959
0.100341
0.338922
0.07883
−0.57456
−0.12261
0.164807
0.22781
−0.13249
−0.30711
0.709723
d ( sra 4 ( 4 ) )
0.123498
−0.50559
−0.25074
0.260561
0.301578
0.162884
−0.1061
0.200141
0.049618
0.053274
−0.250274
d ( sra 4 ( 5 ) )
0.157162
0.111269
0.045852
0.091493
−0.06905
−0.04615
−0.02105
0.000312
−0.26813
0.012083
−0.056383
d ( sra 5 HP )
0.171358
−0.01854
0.137411
1
−0.18105
−0.25133
−0.30075
0.695554
0.161362
−0.36515
0.277636
d ( sra 5 HP ( 1 ) )
0.441603
−0.09751
0.070338
0.655165
−0.31931
0.24544
−0.12118
0.377363
0.212938
0.107045
0.305167
d ( sra 5 HP ( 2 ) )
0.440847
−0.17943
−0.04687
0.113068
−0.3103
0.423303
0.217972
−0.00054
0.158546
0.530374
0.186613
d ( sra 5 HP ( 3 ) )
0.173581
−0.26406
−0.29359
−0.294863
−0.03495
0.373892
0.291871
−0.3491
−0.04218
0.669506
0.022396
d ( sra 5 HP ( 4 ) )
−0.20319
−0.48413
−0.37066
−0.468667
0.077432
0.375479
0.05026
−0.58736
−0.15808
0.536958
−0.100804
d ( sra 5 HP ( 5 ) )
−0.19778
−0.44443
−0.05142
−0.470603
−0.0267
0.181726
−0.11222
−0.65328
−0.19957
0.155251
−0.094487
d ( sra 5 HPd )
−0.22642
0.049662
−0.64517
−0.181045
1
0.181071
−0.25047
−0.1202
0.145693
0.249485
−0.701927
d ( sra 5 HPd ( 1 ) )
−0.10549
0.096079
0.243692
−0.079322
−0.23949
0.037171
0.056829
0.089742
−0.21803
−0.12713
0.153739
d ( sra 5 HPd ( 2 ) )
0.075886
−0.06098
0.373429
0.026708
−0.27217
−0.24066
0.164738
0.174466
−0.04356
−0.51701
0.344384
d ( sra 5 HPd ( 3 ) )
0.146986
0.133083
−0.12691
0.214448
0.626214
−0.19049
−0.00478
0.259703
−0.00889
−0.08661
−0.594721
d ( sra 5 HPd ( 4 ) )
−0.21607
0.292657
0.040432
0.134725
−0.30339
−0.13434
0.076111
0.256021
−0.14939
−0.18034
0.298497
d ( sra 5 HPd ( 5 ) )
0.221903
−0.01008
0.168023
0.117134
−0.19347
0.07981
−0.17643
0.218452
0.517639
−0.08425
0.275028
d ( sra 6 )
0.210584
−0.5456
−0.43054
−0.251333
0.181071
1
−0.07326
−0.26356
0.13829
0.684777
−0.125893
d ( sra 6 ( 1 ) )
0.317968
−0.18409
0.341643
−0.555902
−0.37646
0.141354
0.555757
−0.39784
−0.37736
0.281925
0.063551
d ( sra 6 ( 2 ) )
−0.40509
−0.1486
−0.29447
−0.455943
0.28793
−0.27399
0.33399
−0.40628
−0.36571
−0.03619
−0.197014
d ( sra 6 ( 3 ) )
−0.36199
−0.07095
−0.28393
−0.218374
0.468116
0.017907
−0.41718
−0.30712
0.207712
0.09803
−0.44068
d ( sra 6 ( 4 ) )
−0.18279
0.133293
0.545692
−0.094738
−0.42674
−0.19168
−0.13315
−0.13339
−0.09808
−0.47829
0.285845
d ( sra 6 ( 5 ) )
−0.0372
0.276235
0.113972
0.077645
0.157879
−0.28606
−0.08561
0.099115
0.056066
−0.31996
−0.158429
d ( sra 7 )
0.255294
−0.12461
0.232439
−0.300752
−0.25047
−0.07326
1
0.095636
−0.57891
−0.07941
0.173865
d ( sra 7 ( 1 ) )
−0.33747
0.006726
−0.41158
−0.375801
0.388574
−0.11489
0.048397
−0.16825
0.052182
0.182403
−0.296725
d ( sra 7 ( 2 ) )
−0.24308
0.02298
0.008075
−0.096601
0.113108
−0.07511
−0.33565
−0.07514
0.004769
−0.17777
−0.043599
d ( sra 7 ( 3 ) )
−0.1266
−0.18308
0.292527
0.152561
−0.29492
−0.11097
−0.1785
0.10505
−0.1538
−0.47432
0.175764
d ( sra 7 ( 4 ) )
0.263101
0.309164
0.196771
0.215921
0.068528
−0.29983
−0.08573
0.202322
0.116176
−0.29277
−0.160884
d ( sra 7 ( 5 ) )
−0.03462
0.427861
−0.01285
0.202805
−0.00632
−0.18967
0.108185
0.291081
0.176292
−0.02419
−0.016906
d ( sra 8 HP )
0.313154
0.178616
0.204685
0.695554
−0.1202
−0.26356
0.095636
1
0.049007
−0.54116
0.255321
d ( sra 8 HP ( 1 ) )
0.368818
0.039398
0.13445
0.627102
−0.26137
−0.08786
0.039377
0.771453
0.123421
−0.22523
0.281551
d ( sra 8 HP ( 2 ) )
0.337049
−0.142
−0.00762
0.446666
−0.31005
0.087933
0.02342
0.451643
0.082679
0.034097
0.292211
d ( sra 8 HP ( 3 ) )
0.260669
−0.30209
−0.11343
0.203276
−0.27641
0.23892
−0.0285
0.094997
0.096456
0.272527
0.169549
d ( sra 8 HP ( 4 ) )
0.161844
−0.34784
−0.09767
−0.038237
−0.28522
0.241024
−0.00778
−0.21924
0.025526
0.339496
0.121719
d ( sra 8 HP ( 5 ) )
−0.02586
−0.31609
−0.12752
−0.23095
−0.18846
0.194451
−0.05259
−0.45638
0.023276
0.347952
0.000338
d ( sra 8 HPd )
0.143494
0.267248
0.041332
0.161362
0.145693
0.13829
−0.57891
0.049007
1
0.274634
−0.317396
d ( sra 8 HPd ( 1 ) )
0.37641
0.036996
0.18074
0.077906
−0.17868
0.208367
0.312864
0.182499
−0.29385
−0.00868
0.337861
d ( sra 8 HPd ( 2 ) )
−0.19516
−0.222
−0.27557
−0.125288
−0.06132
0.18867
0.140969
−0.01944
−0.12102
0.271062
−0.066807
d ( sra 8 HPd ( 3 ) )
0.243988
0.165218
−0.10641
−0.104528
0.199267
−0.05199
−0.10737
−0.07835
0.066269
0.115834
−0.022019
d ( sra 8 HPd ( 4 ) )
−0.22492
−0.57039
−0.02159
0.117075
−0.12687
0.098713
0.197799
0.046481
−0.1952
−0.0755
0.01356
d ( sra 8 HPd ( 5 ) )
0.197273
−0.11396
0.17261
−0.083801
−0.18596
−0.0173
−0.12923
−0.2208
0.009627
−0.03997
0.132283
d ( sra 9 )
0.041935
−0.26453
−0.49042
−0.365153
0.249485
0.684777
−0.07941
−0.54116
0.274634
1
−0.32919
d ( sra 9 ( 1 ) )
−0.03669
−0.22531
0.012726
−0.568572
−0.20597
0.24335
0.320544
−0.62226
−0.36395
0.37097
0.210435
d ( sra 9 ( 2 ) )
−0.38002
−0.51751
−0.30704
−0.500054
0.326698
0.185098
0.02172
−0.61409
−0.22096
0.211334
−0.326312
d ( sra 9 ( 3 ) )
−0.12849
−0.00516
0.042397
−0.358765
0.298681
−0.11774
−0.07635
−0.45709
−0.2137
−0.0705
−0.360018
d ( sra 9 ( 4 ) )
−0.43963
0.184704
0.25925
−0.234842
−0.11813
−0.29442
0.042309
−0.22132
−0.08127
−0.38797
−0.007701
d ( sra 9 ( 5 ) )
0.009702
0.452969
0.123364
−0.026925
0.31319
−0.28479
−0.13981
0.066989
0.287077
−0.22866
−0.179804
d ( sra 10 l )
0.171932
−0.01909
0.223361
0.277636
−0.70193
−0.12589
0.173865
0.255321
−0.3174
−0.32919
1
d ( sra 10 l ( 1 ) )
0.005599
−0.32033
−0.1354
0.292328
0.213216
0.080061
−0.23024
0.017578
0.383578
0.246448
−0.409547
d ( sra 10 l ( 2 ) )
0.239986
0.084746
−0.14234
0.11154
−0.00767
0.099154
0.023062
−0.10181
−0.32121
0.220353
0.14672
d ( sra 10 l ( 3 ) )
−0.26232
−0.39254
−0.09161
−0.17551
−0.36567
0.370237
0.018441
−0.27274
0.240698
0.286826
0.138417
d ( sra 10 l ( 4 ) )
0.490922
−0.02283
0.096379
−0.27697
0.171625
0.104078
0.03092
−0.35476
0.090959
0.307841
−0.098449
d ( sra 10 l ( 5 ) )
−0.58786
−0.19166
−0.2258
−0.273407
0.109888
−0.01422
0.283923
−0.33411
−0.49421
0.074032
−0.272728

Acknowledgements

The author thanks to V. Gaftea, D. Jula, M. Matei, B. Pauna, and C. Saman for their computational assistance. He is also highly grateful to the anonymous referent of the “Journal of Economic Structures” for the suggested analytical extensions.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing Interests

The author declares that he has no competing interests.
Literature
4.
go back to reference Blanchard O: Preface. In The natural rate of unemployment—reflections on 25 years of the hypothesis. Edited by: Cross R. Cambridge University Press, New York; 1995. Blanchard O: Preface. In The natural rate of unemployment—reflections on 25 years of the hypothesis. Edited by: Cross R. Cambridge University Press, New York; 1995.
5.
go back to reference Bordo MD, Helbling T (2003) Have national business cycles become more synchronized? Working paper 10130, NBER. http://www.nber.org/papers/w10130. Accessed 13 July 2011 Bordo MD, Helbling T (2003) Have national business cycles become more synchronized? Working paper 10130, NBER. http://www.nber.org/papers/w10130. Accessed 13 July 2011 Bordo MD, Helbling T (2003) Have national business cycles become more synchronized? Working paper 10130, NBER. http://​www.​nber.​org/​papers/​w10130.​ Accessed 13 July 2011 Bordo MD, Helbling T (2003) Have national business cycles become more synchronized? Working paper 10130, NBER. http://www.nber.org/papers/w10130. Accessed 13 July 2011
6.
go back to reference Brock W, Dechert D, Scheickman J, LeBaron B: A test for independence based on the correlation dimension. Econom Rev 1996, 15: 197–235. 10.1080/07474939608800353CrossRef Brock W, Dechert D, Scheickman J, LeBaron B: A test for independence based on the correlation dimension. Econom Rev 1996, 15: 197–235. 10.1080/07474939608800353CrossRef
7.
go back to reference Capilit E (2009) RAS method. Asian Development Bank, RETA 6483—adopting the supply and use framework towards 1993. System of national accounts compliance in selected DMCs, 2nd data review workshop, 7–12 December. http://www2.adb.org/statistics/icp/files/6483–2DRW/RAS-Method-Capilit.pdf. Accessed 13 July 2011 Capilit E (2009) RAS method. Asian Development Bank, RETA 6483—adopting the supply and use framework towards 1993. System of national accounts compliance in selected DMCs, 2nd data review workshop, 7–12 December. http://​www2.​adb.​org/​statistics/​icp/​files/​6483–2DRW/RAS-Method-Capilit.pdf. Accessed 13 July 2011
9.
go back to reference Darvas Z, Szapáry G (2004) Business cycle synchronization in the enlarged EU. Paper revised in October 2004 for the joint ECB-IMF workshop on global financial integration, stability and business cycles: exploring the links, Frankfurt. http://www.imf.org/external/np/seminars/eng/2004/ecbimf/pdf/szapar.pdf. Accessed 11 June 2012 Darvas Z, Szapáry G (2004) Business cycle synchronization in the enlarged EU. Paper revised in October 2004 for the joint ECB-IMF workshop on global financial integration, stability and business cycles: exploring the links, Frankfurt. http://​www.​imf.​org/​external/​np/​seminars/​eng/​2004/​ecbimf/​pdf/​szapar.​pdf.​ Accessed 11 June 2012
10.
go back to reference Dobrescu E (2006) Integration of macroeconomic behavioural relationships and the input–output block (Romanian modelling experience). Paper presented at the international conference on policy modelling (Ecomod 2006), Hong Kong, June 28–30, 2006 Dobrescu E (2006) Integration of macroeconomic behavioural relationships and the input–output block (Romanian modelling experience). Paper presented at the international conference on policy modelling (Ecomod 2006), Hong Kong, June 28–30, 2006
11.
go back to reference Dobrescu E (2009) Measuring the interaction of structural changes with inflation. Rom J Econ Forecast, Supplement Dobrescu E (2009) Measuring the interaction of structural changes with inflation. Rom J Econ Forecast, Supplement
12.
go back to reference Dobrescu E, Gaftea V, Scutaru C: Using the Leontief matrix to estimate the impact of investments upon the global output. Rom J Econ Forecast 2010, 13: 176–187. Dobrescu E, Gaftea V, Scutaru C: Using the Leontief matrix to estimate the impact of investments upon the global output. Rom J Econ Forecast 2010, 13: 176–187.
13.
go back to reference Dobrescu E, Gaftea V: On the accuracy of RAS method in an emergent economy. Amfiteatru Econ 2012, 14: 1–20. Dobrescu E, Gaftea V: On the accuracy of RAS method in an emergent economy. Amfiteatru Econ 2012, 14: 1–20.
14.
go back to reference Giarini O: Science and economics: the case of uncertainty & disequilibrium. Cadmus 2011,1(2):25–34. Giarini O: Science and economics: the case of uncertainty & disequilibrium. Cadmus 2011,1(2):25–34.
22.
go back to reference Lahr ML, de Mesnard L: Biproportional techniques in input–output analysis: table updating and structural analysis. Econ Syst Res 2004, 16: 115–134. 10.1080/0953531042000219259CrossRef Lahr ML, de Mesnard L: Biproportional techniques in input–output analysis: table updating and structural analysis. Econ Syst Res 2004, 16: 115–134. 10.1080/0953531042000219259CrossRef
23.
go back to reference Leontief W: Analiza input–output. Editura Stiintifica, Bucharest; 1970. Leontief W: Analiza input–output. Editura Stiintifica, Bucharest; 1970.
24.
go back to reference Leontief W: Input–output economics. 2nd edition. Oxford University Press, New York; 1986. Leontief W: Input–output economics. 2nd edition. Oxford University Press, New York; 1986.
25.
go back to reference Linden JA, Dietzenbacher E: The determinants of structural change in the European Union: a new application of RAS. Environ Plan A 2000, 32: 2205–2229. 10.1068/a32105CrossRef Linden JA, Dietzenbacher E: The determinants of structural change in the European Union: a new application of RAS. Environ Plan A 2000, 32: 2205–2229. 10.1068/a32105CrossRef
27.
28.
go back to reference Miller RE, Blair PD: Input–output analysis: foundations and extensions. 2nd edition. Cambridge University Press, Cambridge; 2009.CrossRef Miller RE, Blair PD: Input–output analysis: foundations and extensions. 2nd edition. Cambridge University Press, Cambridge; 2009.CrossRef
29.
go back to reference Milnor J: On the concept of attractor. Commun Math Phys 1985, 99: 177–195. 10.1007/BF01212280CrossRef Milnor J: On the concept of attractor. Commun Math Phys 1985, 99: 177–195. 10.1007/BF01212280CrossRef
30.
go back to reference Milnor J: Comments on the concept of attractor: correction and remarks. Commun Math Phys 1985, 102: 517–519. 10.1007/BF01209298CrossRef Milnor J: Comments on the concept of attractor: correction and remarks. Commun Math Phys 1985, 102: 517–519. 10.1007/BF01209298CrossRef
32.
go back to reference Moloney K, Raghavendra S: Testing for nonlinear dependence in the credit default swap market. Econ Res Int 2011., 2011: Article ID 708704. doi:10.1155/2011/708704 Article ID 708704. doi:10.1155/2011/708704 Moloney K, Raghavendra S: Testing for nonlinear dependence in the credit default swap market. Econ Res Int 2011., 2011: Article ID 708704. doi:10.1155/2011/708704 Article ID 708704. doi:10.1155/2011/708704
33.
go back to reference National Commission for Prognosis, Romania (2012) Data base of the macromodel-Dobrescu from the project strengthening the institutional capacity in evaluating and formulating of macroeconomic policies for economic convergence with EU within the National Commission for Prognosis, SMIS code 27153 National Commission for Prognosis, Romania (2012) Data base of the macromodel-Dobrescu from the project strengthening the institutional capacity in evaluating and formulating of macroeconomic policies for economic convergence with EU within the National Commission for Prognosis, SMIS code 27153
34.
go back to reference Nelson CR, Plosser CI: Trends and random walks in macroeconomic time series: some evidence and implications. J Monet Econ 1982, 10: 139–162. 10.1016/0304-3932(82)90012-5CrossRef Nelson CR, Plosser CI: Trends and random walks in macroeconomic time series: some evidence and implications. J Monet Econ 1982, 10: 139–162. 10.1016/0304-3932(82)90012-5CrossRef
36.
go back to reference Rosser JB Jr, Kramer KL Jr: Integrating the complexity vision into mathematical economics. In Complexity and the teaching of economics. Edited by: Colander D. Edward Elgar, Cheltenham Glos; 2000:209–230. http://cob.jmu.edu/rosserjb/mathecon.doc. Accessed 5 June 2012 http://cob.jmu.edu/rosserjb/mathecon.doc. Accessed 5 June 2012 Rosser JB Jr, Kramer KL Jr: Integrating the complexity vision into mathematical economics. In Complexity and the teaching of economics. Edited by: Colander D. Edward Elgar, Cheltenham Glos; 2000:209–230. http://​cob.​jmu.​edu/​rosserjb/​mathecon.​doc.​ Accessed 5 June 2012 http://cob.jmu.edu/rosserjb/mathecon.doc. Accessed 5 June 2012
37.
go back to reference Ruelle D: What is…a strange attractor? Not Am Math Soc 2006,53(7):764–765. Ruelle D: What is…a strange attractor? Not Am Math Soc 2006,53(7):764–765.
38.
go back to reference Sawyer JA: Forecasting with input–output matrices: are the coefficients stationary? Econ Syst Res 1992, 4: 325–348. doi:10.1080/09535319200000030 doi:10.1080/09535319200000030 10.1080/09535319200000030CrossRef Sawyer JA: Forecasting with input–output matrices: are the coefficients stationary? Econ Syst Res 1992, 4: 325–348. doi:10.1080/09535319200000030 doi:10.1080/09535319200000030 10.1080/09535319200000030CrossRef
39.
go back to reference Schirwitz B, Wälde K (2004) Synchronization of business cycles in G7 and EU14 countries. European Commission Directorate General Economic and Financial Affairs, October. http://www.waelde.com/pdf/SchirwitzWaeldeTIERsynchronization.pdf. Accessed 10 June 2012 Schirwitz B, Wälde K (2004) Synchronization of business cycles in G7 and EU14 countries. European Commission Directorate General Economic and Financial Affairs, October. http://www.waelde.com/pdf/SchirwitzWaeldeTIERsynchronization.pdf. Accessed 10 June 2012 Schirwitz B, Wälde K (2004) Synchronization of business cycles in G7 and EU14 countries. European Commission Directorate General Economic and Financial Affairs, October. http://​www.​waelde.​com/​pdf/​SchirwitzWaeldeT​IERsynchronizati​on.​pdf.​ Accessed 10 June 2012 Schirwitz B, Wälde K (2004) Synchronization of business cycles in G7 and EU14 countries. European Commission Directorate General Economic and Financial Affairs, October. http://www.waelde.com/pdf/SchirwitzWaeldeTIERsynchronization.pdf. Accessed 10 June 2012
40.
go back to reference Sprott JC: Chaos and time-series analysis. Oxford University Press, New York; 2003. Sprott JC: Chaos and time-series analysis. Oxford University Press, New York; 2003.
41.
go back to reference Stone R (1961) Input–output and national accounts organisation for European economic co-operation, Paris Stone R (1961) Input–output and national accounts organisation for European economic co-operation, Paris Stone R (1961) Input–output and national accounts organisation for European economic co-operation, Paris Stone R (1961) Input–output and national accounts organisation for European economic co-operation, Paris
42.
go back to reference Stone R, Brown JAC: A long-term growth model for the British economy. In Europe’s future in figures. Edited by: Geary RC. North-Holland, Amsterdam; 1962. Stone R, Brown JAC: A long-term growth model for the British economy. In Europe’s future in figures. Edited by: Geary RC. North-Holland, Amsterdam; 1962.
43.
go back to reference Toda HY, Yamamoto T: Statistical inference in vector autoregressions with possibly integrated processes. J Econom 1995, 66: 225–250. 10.1016/0304-4076(94)01616-8CrossRef Toda HY, Yamamoto T: Statistical inference in vector autoregressions with possibly integrated processes. J Econom 1995, 66: 225–250. 10.1016/0304-4076(94)01616-8CrossRef
44.
go back to reference United Nations (1999) Handbook of input–output table: compilation and analysis, studies in methods. Handbook of national accounting, series F, No. 74, Department for Economic and Social Affairs, Statistics Division, New York. http://unstats.un.org/unsd/publication/SeriesF/SeriesF_74E.pdf. Accessed 13 July 2011 United Nations (1999) Handbook of input–output table: compilation and analysis, studies in methods. Handbook of national accounting, series F, No. 74, Department for Economic and Social Affairs, Statistics Division, New York. http://unstats.un.org/unsd/publication/SeriesF/SeriesF_74E.pdf. Accessed 13 July 2011 United Nations (1999) Handbook of input–output table: compilation and analysis, studies in methods. Handbook of national accounting, series F, No. 74, Department for Economic and Social Affairs, Statistics Division, New York. http://​unstats.​un.​org/​unsd/​publication/​SeriesF/​SeriesF_​74E.​pdf.​ Accessed 13 July 2011 United Nations (1999) Handbook of input–output table: compilation and analysis, studies in methods. Handbook of national accounting, series F, No. 74, Department for Economic and Social Affairs, Statistics Division, New York. http://unstats.un.org/unsd/publication/SeriesF/SeriesF_74E.pdf. Accessed 13 July 2011
Metadata
Title
Restatement of the I-O Coefficient Stability Problem
Author
Emilian Dobrescu
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Journal of Economic Structures / Issue 1/2013
Electronic ISSN: 2193-2409
DOI
https://doi.org/10.1186/2193-2409-2-2

Other articles of this Issue 1/2013

Journal of Economic Structures 1/2013 Go to the issue