Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Restaurant Health Inspections and Crime Statistics Predict the Real Estate Market in New York City

Authors: Rafael M. Moraes, Anasse Bari, Jiachen Zhu

Published in: Machine Learning, Optimization, and Data Science

Publisher: Springer International Publishing

share
SHARE

Abstract

Predictions of apartments prices in New York City (NYC) have always been of interest to new homeowners, investors, Wall Street funds managers, and inhabitants of the city. In recent years, average prices have risen to the highest ever recorded rebounding after the 2008 economic recession. Although prices are trending up, not all apartments are. Different regions of the city have appreciated differently over time; knowing where to buy or sell is essential for all stakeholders. In this project, we propose a predictive analytics framework that analyzes new alternative data sources to extract predictive features of the NYC real estate market. Our experiments indicated that restaurant health inspection data and crime statistics can help predict apartments prices in NYC. The framework we introduce in this work uses an artificial recurrent neural network with Long Short-Term Memory (LSTM) units and incorporates the two latter predictive features to predict future prices of apartments. Empirical results show that feeding predictive features from (1) restaurant inspections data and (2) crime statistics to a neural network with LSTM units results in smaller errors than the traditional Autoregressive Integrated Moving Average (ARIMA) model, which is normally used for this type of regression. Predictive analytics based on non-linear models with features from alternative data sources can capture hidden relationships that linear models are not able not discover. The framework presented in this study has the potential to serve as a supplement to the traditional forecasting tools of real estate markets.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, Hoboken (2011) Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, Hoboken (2011)
2.
go back to reference Bari, A., Chaouchi, M., Jung, T.: Predictive Analytics for Dummies. Wiley, Hoboken (2016) Bari, A., Chaouchi, M., Jung, T.: Predictive Analytics for Dummies. Wiley, Hoboken (2016)
4.
go back to reference Bari, A., Peidaee, P., Khera, A., Zhu, J., Chen, H.: Predicting financial markets using the wisdom of crowds. In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), pp. 334–340. IEEE (2019) Bari, A., Peidaee, P., Khera, A., Zhu, J., Chen, H.: Predicting financial markets using the wisdom of crowds. In: 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), pp. 334–340. IEEE (2019)
5.
go back to reference Bari, A., Saatcioglu, G.: Emotion artificial intelligence derived from ensemble learning. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 1763–1770. IEEE (2018) Bari, A., Saatcioglu, G.: Emotion artificial intelligence derived from ensemble learning. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 1763–1770. IEEE (2018)
6.
go back to reference Abdelghani Bellaachia and Anasse Bari. SFLOSCAN: a biologically-inspired data mining framework for community identification in dynamic social networks. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1–8. IEEE (2011) Abdelghani Bellaachia and Anasse Bari. SFLOSCAN: a biologically-inspired data mining framework for community identification in dynamic social networks. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1–8. IEEE (2011)
8.
go back to reference Bellaachia, A., Bari, A.: A flocking based data mining algorithm for detecting outliers in cancer gene expression microarray data. In: 2012 International Conference on Information Retrieval & Knowledge Management, pp. 305–311. IEEE (2012) Bellaachia, A., Bari, A.: A flocking based data mining algorithm for detecting outliers in cancer gene expression microarray data. In: 2012 International Conference on Information Retrieval & Knowledge Management, pp. 305–311. IEEE (2012)
9.
go back to reference Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer, Berlin (2016) CrossRef Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer, Berlin (2016) CrossRef
13.
go back to reference Granger, C.W.J.: Causality, cointegration, and control. J. Econ. Dyn. Control 12(2–3), 551–559 (1988) CrossRef Granger, C.W.J.: Causality, cointegration, and control. J. Econ. Dyn. Control 12(2–3), 551–559 (1988) CrossRef
14.
go back to reference Greene, W.H.: 1951 Econometric Analysis. Pearson Prentice Hall, Upper Saddle River (2012) Greene, W.H.: 1951 Econometric Analysis. Pearson Prentice Hall, Upper Saddle River (2012)
15.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997) CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997) CrossRef
21.
go back to reference Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: with R Examples. Springer, Berlin (2017) CrossRef Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications: with R Examples. Springer, Berlin (2017) CrossRef
Metadata
Title
Restaurant Health Inspections and Crime Statistics Predict the Real Estate Market in New York City
Authors
Rafael M. Moraes
Anasse Bari
Jiachen Zhu
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-37599-7_45

Premium Partner