Skip to main content
Top

2020 | OriginalPaper | Chapter

Restricted Boltzmann Machines Based Fault Estimation in Multi Terminal HVDC Transmission System

Author : Raheel Muzzammel

Published in: Intelligent Technologies and Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The facilitation of bulk power transmission and non-synchronized interconnection of alternating current (AC) grids convince engineers and researchers to explore high voltage direct current (HVDC) transmission system in a comprehensive way. This exploration focuses on control and protection of HVDC transmission system. Fault estimation is a core component of protection of HVDC transmission system. This is because of sudden built up of direct current (DC) fault. In this research, DC fault is estimated in multi terminal HVDC transmission system based on restricted Boltzmann machine. Restricted Boltzmann machine is a generative stochastic artificial neural network in which learning of probability distribution is conducted over the set of inputs. Three terminal HVDC transmission system is simulated under normal and faulty conditions to analyze variations in electrical parameters. These variations serve as learning parameters of restricted Boltzmann machine. Contrastive divergence algorithm is developed to train restricted Boltzmann machine. It is an approximate maximum likelihood learning algorithm in which gradient of difference of divergences is followed. It is found that fault is estimated with the testing of variations in minimum time steps. Simulation environment is built in Matlab/Simulink.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hingorani, N.G.: High voltage DC transmission: a power electronics workhorse. IEEE Spectr. 33(4), 63–72 (1996)CrossRef Hingorani, N.G.: High voltage DC transmission: a power electronics workhorse. IEEE Spectr. 33(4), 63–72 (1996)CrossRef
2.
go back to reference Ellert, F.J.: HVDC for the long run. Spectrum, 36–42 (1976) Ellert, F.J.: HVDC for the long run. Spectrum, 36–42 (1976)
3.
go back to reference Arrillaga, J.J.: High Voltage Direct Current Transmission. Peter Peregrinus Ltd., Stevenage (1983) Arrillaga, J.J.: High Voltage Direct Current Transmission. Peter Peregrinus Ltd., Stevenage (1983)
4.
go back to reference Padyar, K.R.: HVDC Power Transmission Systems. Wiley Eastern, New Delhi (1990) Padyar, K.R.: HVDC Power Transmission Systems. Wiley Eastern, New Delhi (1990)
5.
go back to reference High Voltage Direct Current Handbook, California Electric Power Research Institute, Palo Alto, California (1994) High Voltage Direct Current Handbook, California Electric Power Research Institute, Palo Alto, California (1994)
6.
go back to reference Starke, M., Tolbert, L.M., Ozpineci, B.: AC vs. DC distribution: a loss comparison. In: IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, pp. 1–7 (2008) Starke, M., Tolbert, L.M., Ozpineci, B.: AC vs. DC distribution: a loss comparison. In: IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, pp. 1–7 (2008)
7.
go back to reference Sun, T., Xia, J., Sun, Y., Mao, X.: Research on the applicable range of AC and DC transmission voltage class sequence. In: International Conference on Power System Technology, Chengdu, pp. 374–380 (2014) Sun, T., Xia, J., Sun, Y., Mao, X.: Research on the applicable range of AC and DC transmission voltage class sequence. In: International Conference on Power System Technology, Chengdu, pp. 374–380 (2014)
8.
go back to reference Meah, K., Ula, S.: Comparative evaluation of HVDC and HVAC transmission systems. In: IEEE Power Engineering Society General Meeting, Tampa, FL, pp. 1–5 (2007) Meah, K., Ula, S.: Comparative evaluation of HVDC and HVAC transmission systems. In: IEEE Power Engineering Society General Meeting, Tampa, FL, pp. 1–5 (2007)
10.
go back to reference Bowles, J.P., et al.: AC-DC economics and alternatives-1987 panel session report. IEEE Trans. Power Delivery 5(4), 1241–1248 (1990) Bowles, J.P., et al.: AC-DC economics and alternatives-1987 panel session report. IEEE Trans. Power Delivery 5(4), 1241–1248 (1990)
11.
go back to reference Bateman, L.A., Haywood, R.W.: Nelson river DC transmission project. IEEE Trans. Power Appar. Syst. PAS 88(5), 688–693 (1969)CrossRef Bateman, L.A., Haywood, R.W.: Nelson river DC transmission project. IEEE Trans. Power Appar. Syst. PAS 88(5), 688–693 (1969)CrossRef
12.
go back to reference Halder, T.: Comparative study of HVDC and HVAC for a bulk power transmission. In: International Conference on Power, Energy and Control (ICPEC), Sri Rangalatchum Dindigul, pp. 139–144 (2013) Halder, T.: Comparative study of HVDC and HVAC for a bulk power transmission. In: International Conference on Power, Energy and Control (ICPEC), Sri Rangalatchum Dindigul, pp. 139–144 (2013)
13.
go back to reference Ruderval, R., Charpenitier, J.P., Sharma, R.: High voltage direct current transmission systems technology review paper. Energy Week, Washington D.C., USA (2000) Ruderval, R., Charpenitier, J.P., Sharma, R.: High voltage direct current transmission systems technology review paper. Energy Week, Washington D.C., USA (2000)
14.
go back to reference Hammad, A.E., Long, W.F.: Performance and economic comparisons between point-to-point HVDC transmission and hybrid back-to-back HVDC/AC transmission. IEEE Trans. Power Delivery 5(2), 1137–1144 (1990)CrossRef Hammad, A.E., Long, W.F.: Performance and economic comparisons between point-to-point HVDC transmission and hybrid back-to-back HVDC/AC transmission. IEEE Trans. Power Delivery 5(2), 1137–1144 (1990)CrossRef
15.
go back to reference Chamia, M.: The role of HVDC transmission in the 21st century. In: IEEE WPM - Panel Session (1999) Chamia, M.: The role of HVDC transmission in the 21st century. In: IEEE WPM - Panel Session (1999)
16.
go back to reference Tenzer, M., Koch, H., Imamovic, D.: Underground transmission lines for high power AC and DC transmission. In: IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, pp. 1–4 (2016) Tenzer, M., Koch, H., Imamovic, D.: Underground transmission lines for high power AC and DC transmission. In: IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, pp. 1–4 (2016)
17.
go back to reference Long, W.F., Litzenberger, W.: Fundamental concepts in high voltage direct current power transmission PES (T&D), Orlando, FL, pp. 1–2 (2012) Long, W.F., Litzenberger, W.: Fundamental concepts in high voltage direct current power transmission PES (T&D), Orlando, FL, pp. 1–2 (2012)
18.
go back to reference Bahrman, M.P.: Overview of HVDC transmission. IEEE PES Power Systems Conference and Exposition, Atlanta, GA, pp. 18–23 (2006) Bahrman, M.P.: Overview of HVDC transmission. IEEE PES Power Systems Conference and Exposition, Atlanta, GA, pp. 18–23 (2006)
19.
go back to reference Wang, H., Redfern, M.A.: The advantages and disadvantages of using HVDC to interconnect AC networks. In: 45th International Universities Power Engineering Conference (UPEC), pp. 1–5 (2010) Wang, H., Redfern, M.A.: The advantages and disadvantages of using HVDC to interconnect AC networks. In: 45th International Universities Power Engineering Conference (UPEC), pp. 1–5 (2010)
20.
go back to reference Keim, T., Bindra, A.: Recent advances in HVDC and UHVDC transmission [Happenings]. IEEE Power Electron. Mag. 4(4), 12–18 (2017)CrossRef Keim, T., Bindra, A.: Recent advances in HVDC and UHVDC transmission [Happenings]. IEEE Power Electron. Mag. 4(4), 12–18 (2017)CrossRef
21.
go back to reference Muzzammel, R., et al.: MT–HVdc systems fault classification and location methods based on traveling and non-traveling waves—a comprehensive review. Appl. Sci. 9, 4760 (2019)CrossRef Muzzammel, R., et al.: MT–HVdc systems fault classification and location methods based on traveling and non-traveling waves—a comprehensive review. Appl. Sci. 9, 4760 (2019)CrossRef
22.
go back to reference Muzzammel, R.: Traveling waves-based method for fault estimation in HVDC transmission system. Energies 12, 3614 (2019)CrossRef Muzzammel, R.: Traveling waves-based method for fault estimation in HVDC transmission system. Energies 12, 3614 (2019)CrossRef
23.
go back to reference Muzzammel, R., Fateh, H.M., Ali, Z.: Analytical behaviour of thyrister based HVDC transmission lines under normal and faulty conditions. In: International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–5, Lahore (2018) Muzzammel, R., Fateh, H.M., Ali, Z.: Analytical behaviour of thyrister based HVDC transmission lines under normal and faulty conditions. In: International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–5, Lahore (2018)
25.
go back to reference Zhang, Y., Tai, N., Xu, B.: Fault analysis and traveling wave protection scheme for bipolar HVDC lines. IEEE Trans. Power Deliv. 27(3), 1583–1591 (2012)CrossRef Zhang, Y., Tai, N., Xu, B.: Fault analysis and traveling wave protection scheme for bipolar HVDC lines. IEEE Trans. Power Deliv. 27(3), 1583–1591 (2012)CrossRef
26.
go back to reference Johnson, J.M., Yadav, A.: Complete protection scheme for fault detection, classification and location estimation in HVDC transmission lines using support vector machines. IET Sci. Meas. Technol. 11(3), 279–287 (2017)CrossRef Johnson, J.M., Yadav, A.: Complete protection scheme for fault detection, classification and location estimation in HVDC transmission lines using support vector machines. IET Sci. Meas. Technol. 11(3), 279–287 (2017)CrossRef
27.
go back to reference He, Z., Liao, K., Li, X., Lin, S., Yang, J., Mai, R.: Natural frequency based line fault location in HVDC lines. IEEE Trans. Power Deliv. 29(2), 851–859 (2014)CrossRef He, Z., Liao, K., Li, X., Lin, S., Yang, J., Mai, R.: Natural frequency based line fault location in HVDC lines. IEEE Trans. Power Deliv. 29(2), 851–859 (2014)CrossRef
28.
go back to reference Huai, Q., et al.: Backup protection scheme for multi-terminal HVDC system based on wavelet-packet energy entropy. IEEE Access 7, 49790–49803 (2019)CrossRef Huai, Q., et al.: Backup protection scheme for multi-terminal HVDC system based on wavelet-packet energy entropy. IEEE Access 7, 49790–49803 (2019)CrossRef
29.
go back to reference Leterme, W., Azad, S.P., Van Hertem, D.: HVDC grid protection algorithm design in phase and modal domains. IET Renew. Power Gener. 12(13), 1538–1546 (2018)CrossRef Leterme, W., Azad, S.P., Van Hertem, D.: HVDC grid protection algorithm design in phase and modal domains. IET Renew. Power Gener. 12(13), 1538–1546 (2018)CrossRef
30.
go back to reference Salehi, M., Namdari, F.: Fault classification and faulted phase selection for transmission line using morphological edge detection filter. IET Gener. Transm. Distrib. 12(7), 1595–1605 (2018) Salehi, M., Namdari, F.: Fault classification and faulted phase selection for transmission line using morphological edge detection filter. IET Gener. Transm. Distrib. 12(7), 1595–1605 (2018)
31.
go back to reference Luo, G., Yao, C., Liu, Y., Tan, Y., He, J., Wang, K.: Stacked auto-encoder based fault location in VSC-HVDC. IEEE Access 6, 33216–33224 (2018)CrossRef Luo, G., Yao, C., Liu, Y., Tan, Y., He, J., Wang, K.: Stacked auto-encoder based fault location in VSC-HVDC. IEEE Access 6, 33216–33224 (2018)CrossRef
32.
go back to reference Hoseinzadeh, B., Amini, M.H., Bak, C.L., Blaabierg, F.: High impedance DC fault detection and localization in HVDC transmission lines using harmonic analysis. In: International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I&CPS Europe, pp. 1–4 (2018) Hoseinzadeh, B., Amini, M.H., Bak, C.L., Blaabierg, F.: High impedance DC fault detection and localization in HVDC transmission lines using harmonic analysis. In: International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I&CPS Europe, pp. 1–4 (2018)
33.
go back to reference Lan, S., Chen, M.J., Chen, D.Y.: A novel HVDC double terminal nonsynchronous fault location method based on convolutional neural network. IEEE Trans. Power Deliv. 34(3), 848–857 (2019)CrossRef Lan, S., Chen, M.J., Chen, D.Y.: A novel HVDC double terminal nonsynchronous fault location method based on convolutional neural network. IEEE Trans. Power Deliv. 34(3), 848–857 (2019)CrossRef
34.
go back to reference Suonan, J., Gao, S., Song, G.: A novel fault location method for HVDC transmission lines. IEEE Trans. Power Deliv. 25, 1203–1209 (2010)CrossRef Suonan, J., Gao, S., Song, G.: A novel fault location method for HVDC transmission lines. IEEE Trans. Power Deliv. 25, 1203–1209 (2010)CrossRef
35.
go back to reference Nanayakkara, O., Rajapakse, A., Wachal, R.: Travelling wave-based line fault location in star-connected multi-terminal HVDC systems. IEEE Trans. Power Deliv. 27, 2286–2294 (2012)CrossRef Nanayakkara, O., Rajapakse, A., Wachal, R.: Travelling wave-based line fault location in star-connected multi-terminal HVDC systems. IEEE Trans. Power Deliv. 27, 2286–2294 (2012)CrossRef
36.
go back to reference Dewe, M.B., Sankar, S., Arrillaga, J.: The application of satellite time references to HVDC fault location. IEEE Trans. Power Deliv. 8(3), 1295–1302 (1993)CrossRef Dewe, M.B., Sankar, S., Arrillaga, J.: The application of satellite time references to HVDC fault location. IEEE Trans. Power Deliv. 8(3), 1295–1302 (1993)CrossRef
37.
go back to reference Li, Y., Zhang, S., Li, H.: A fault location method based on genetic algorithm for high-voltage direct current transmission line. Eur. Trans. Electr. Power 22, 866–878 (2012)CrossRef Li, Y., Zhang, S., Li, H.: A fault location method based on genetic algorithm for high-voltage direct current transmission line. Eur. Trans. Electr. Power 22, 866–878 (2012)CrossRef
38.
go back to reference Yuangsheng, L., Gang, W., Haifeng, L.: Time domain fault-location method on HVDC transmission lines under unsynchronized two-end measurement and uncertain line parameters. IEEE Trans. Power Deliv. 30, 1031–1038 (2015)CrossRef Yuangsheng, L., Gang, W., Haifeng, L.: Time domain fault-location method on HVDC transmission lines under unsynchronized two-end measurement and uncertain line parameters. IEEE Trans. Power Deliv. 30, 1031–1038 (2015)CrossRef
39.
go back to reference Livani, H., Evrenosoglu, C.Y.: A single-ended fault location method for segmented HVDC transmission line. Electr. Power Syst. Res. 107, 190–198 (2014)CrossRef Livani, H., Evrenosoglu, C.Y.: A single-ended fault location method for segmented HVDC transmission line. Electr. Power Syst. Res. 107, 190–198 (2014)CrossRef
40.
go back to reference Guoing, S., Xu, C., Xinlei, C.: A fault location method for VSC-HVDC transmission lines based on natural frequency of current. Electr. Power Energy Syst. 63, 347–352 (2014)CrossRef Guoing, S., Xu, C., Xinlei, C.: A fault location method for VSC-HVDC transmission lines based on natural frequency of current. Electr. Power Energy Syst. 63, 347–352 (2014)CrossRef
41.
go back to reference Yusuff, A.A., Jimoh, A.A., Munda, J.L.: Fault location in transmission lines based on stationary wavelet transform determinant function feature and support vector regression. Electr. Power Syst. Res. 110, 73–83 (2014)CrossRef Yusuff, A.A., Jimoh, A.A., Munda, J.L.: Fault location in transmission lines based on stationary wavelet transform determinant function feature and support vector regression. Electr. Power Syst. Res. 110, 73–83 (2014)CrossRef
42.
go back to reference Azad, S.P., Hertem, D.V.: A fast local bus current-based primary relaying algorithm for HVDC grids. IEEE Trans. Power Deliv. 32(1), 193–202 (2017)CrossRef Azad, S.P., Hertem, D.V.: A fast local bus current-based primary relaying algorithm for HVDC grids. IEEE Trans. Power Deliv. 32(1), 193–202 (2017)CrossRef
43.
go back to reference Bucher, M.K., Franck, C.M.: Fault current interruption in multiterminal HVDC networks. IEEE Trans. Power Deliv. 31(1), 87–95 (2016)CrossRef Bucher, M.K., Franck, C.M.: Fault current interruption in multiterminal HVDC networks. IEEE Trans. Power Deliv. 31(1), 87–95 (2016)CrossRef
44.
go back to reference Mokhberdoran, A., Silva, N., Leite, H., Carvalho, A.: Unidirectional protection strategy for multi-terminal HVDC grids. Trans. Environ. Electr. Eng. 1(4), 58–65 (2016)CrossRef Mokhberdoran, A., Silva, N., Leite, H., Carvalho, A.: Unidirectional protection strategy for multi-terminal HVDC grids. Trans. Environ. Electr. Eng. 1(4), 58–65 (2016)CrossRef
45.
go back to reference Leterme, W., Azad, S.P., Hertem, D.V.: A local backup protection algorithm for HVDC grids. IEEE Trans. Power Deliv. 31(4), 1767–1775 (2016)CrossRef Leterme, W., Azad, S.P., Hertem, D.V.: A local backup protection algorithm for HVDC grids. IEEE Trans. Power Deliv. 31(4), 1767–1775 (2016)CrossRef
46.
go back to reference Hertem, D.V., Ghandhari, M.: Multi-terminal VSC HVDC for the European supergrid: obstacles. Renew. Sustain. Energy Rev. 14(9), 3156–3163 (2010)CrossRef Hertem, D.V., Ghandhari, M.: Multi-terminal VSC HVDC for the European supergrid: obstacles. Renew. Sustain. Energy Rev. 14(9), 3156–3163 (2010)CrossRef
47.
go back to reference Kerf, K.D., et al.: Wavelet-based protection strategy for dc faults in multi-terminal VSC HVDC systems. IET Gen. Transm. Distrib. 5(4), 496–503 (2011)CrossRef Kerf, K.D., et al.: Wavelet-based protection strategy for dc faults in multi-terminal VSC HVDC systems. IET Gen. Transm. Distrib. 5(4), 496–503 (2011)CrossRef
48.
go back to reference Leterme, W., Beerten, J., Hertem, D.V.: Non-unit protection of HVDC grids with inductive dc cable termination. IEEE Trans. Power Del. 31(2), 820–828 (2016)CrossRef Leterme, W., Beerten, J., Hertem, D.V.: Non-unit protection of HVDC grids with inductive dc cable termination. IEEE Trans. Power Del. 31(2), 820–828 (2016)CrossRef
49.
go back to reference Sneath, J., Rajapakse, A.D.: Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid dc breakers. IEEE Trans. Power Deliv. 31(3), 973–981 (2016)CrossRef Sneath, J., Rajapakse, A.D.: Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid dc breakers. IEEE Trans. Power Deliv. 31(3), 973–981 (2016)CrossRef
50.
go back to reference Elmore, W.A.: Protective Relaying Theory and Applications. Marcel Dekker, New York (2004) Elmore, W.A.: Protective Relaying Theory and Applications. Marcel Dekker, New York (2004)
51.
go back to reference Naidoo, D., Ijumba, N.: HVDC line protection for the proposed future HVDC systems. In: Proceedings IEEE PowerCon, vol. 2, pp. 1327–1332 (2004) Naidoo, D., Ijumba, N.: HVDC line protection for the proposed future HVDC systems. In: Proceedings IEEE PowerCon, vol. 2, pp. 1327–1332 (2004)
52.
go back to reference Sun, J., Saeedifard, M., Meliopoulos, A.P.S.: Backup protection of multi-terminal HVDC grids based on quickest change detection. IEEE Trans. Power Deliv. 34(1), 177–187 (2019)CrossRef Sun, J., Saeedifard, M., Meliopoulos, A.P.S.: Backup protection of multi-terminal HVDC grids based on quickest change detection. IEEE Trans. Power Deliv. 34(1), 177–187 (2019)CrossRef
53.
go back to reference Farshad, M.: Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description method. Int. J. Electr. Power Energy Syst. 104, 615–625 (2019)CrossRef Farshad, M.: Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description method. Int. J. Electr. Power Energy Syst. 104, 615–625 (2019)CrossRef
54.
go back to reference Azad, S.P., Leterme, W., Hertem, D.V.: A DC grid primary protection algorithm based on current measurements. In: 17th European Conference on Power Electronics and Applications, EPE 2015 ECCE-Europe, Geneva, pp. 1–10 (2015) Azad, S.P., Leterme, W., Hertem, D.V.: A DC grid primary protection algorithm based on current measurements. In: 17th European Conference on Power Electronics and Applications, EPE 2015 ECCE-Europe, Geneva, pp. 1–10 (2015)
55.
go back to reference Yang, Q., Blond, S.L., Aggarwal, R., Wang, Y., Li, J.: New ANN method for multi-terminal HVDC protection relaying. Electr. Power Syst. Res. 148, 192–201 (2017)CrossRef Yang, Q., Blond, S.L., Aggarwal, R., Wang, Y., Li, J.: New ANN method for multi-terminal HVDC protection relaying. Electr. Power Syst. Res. 148, 192–201 (2017)CrossRef
56.
go back to reference Augustin, T., Jahn, I., Norrga, S., Nee, H.: Transient behaviour of VSC-HVDC links with DC breakers under faults. In: 19th European Conference on Power Electronics and Applications, EPE 2017 ECCE Europe, Warsaw, pp. P.1–P.10 (2017) Augustin, T., Jahn, I., Norrga, S., Nee, H.: Transient behaviour of VSC-HVDC links with DC breakers under faults. In: 19th European Conference on Power Electronics and Applications, EPE 2017 ECCE Europe, Warsaw, pp. P.1–P.10 (2017)
57.
go back to reference Li, C., Gole, A.M., Zhao, C.: A fast DC fault detection method using DC reactor voltages in HVDC grids. IEEE Trans. Power Deliv. 33(5), 2254–2264 (2018)CrossRef Li, C., Gole, A.M., Zhao, C.: A fast DC fault detection method using DC reactor voltages in HVDC grids. IEEE Trans. Power Deliv. 33(5), 2254–2264 (2018)CrossRef
58.
go back to reference Bertho, R., Lacerda, V.A., Monaro, R.M., Vieira, J.C.M., Coury, D.V.: Selective nonunit protection technique for multiterminal VSC HVDC grids. IEEE Trans. Power Deliv. 33(5), 2106–2114 (2018)CrossRef Bertho, R., Lacerda, V.A., Monaro, R.M., Vieira, J.C.M., Coury, D.V.: Selective nonunit protection technique for multiterminal VSC HVDC grids. IEEE Trans. Power Deliv. 33(5), 2106–2114 (2018)CrossRef
59.
go back to reference Xie, Z., Zou, G., Gao, L., Zhang, J., Gao, H.: Voltage pole-wave protection scheme for multi-terminal DC grid. J. Eng. 2019(16), 806–811 (2019) Xie, Z., Zou, G., Gao, L., Zhang, J., Gao, H.: Voltage pole-wave protection scheme for multi-terminal DC grid. J. Eng. 2019(16), 806–811 (2019)
60.
go back to reference Yeap, Y.M., Ukil, A.: Fault detection in HVDC system using short time fourier transform. In: IEEE Power and Energy Society General Meeting, PESGM, Boston, MA, pp. 1–5 (2016) Yeap, Y.M., Ukil, A.: Fault detection in HVDC system using short time fourier transform. In: IEEE Power and Energy Society General Meeting, PESGM, Boston, MA, pp. 1–5 (2016)
61.
go back to reference Brigham, E.O.: The Fast Fourier Transform. Prentice Hall, Englewood Cliffs (1974)MATH Brigham, E.O.: The Fast Fourier Transform. Prentice Hall, Englewood Cliffs (1974)MATH
62.
go back to reference Vasanth, S., Yeap, Y.M., Ukil, A.: Fault location estimation for VSC-HVDC system using artificial neural network. In: IEEE Region 10 Conference, TENCON, pp. 501–504 (2016) Vasanth, S., Yeap, Y.M., Ukil, A.: Fault location estimation for VSC-HVDC system using artificial neural network. In: IEEE Region 10 Conference, TENCON, pp. 501–504 (2016)
63.
go back to reference Elgeziry, M.Z., Elsadd, M.A., Elkalashy, N.I., Kawady, T.A., Taalab, A.M.I.: AC spectrum analysis for detecting DC faults on HVDC systems. In: 19th International Middle East Power Systems Conference, MEPCON, pp. 708–715 (2017) Elgeziry, M.Z., Elsadd, M.A., Elkalashy, N.I., Kawady, T.A., Taalab, A.M.I.: AC spectrum analysis for detecting DC faults on HVDC systems. In: 19th International Middle East Power Systems Conference, MEPCON, pp. 708–715 (2017)
64.
go back to reference Satpathi, K., Yeap, Y.M., Ukil, A., Geddada, N.: Short-time Fourier Transform based transient analysis of VSC interfaced point-to-point dc system. IEEE Trans. Industr. Electron. 65(5), 4080–4091 (2018)CrossRef Satpathi, K., Yeap, Y.M., Ukil, A., Geddada, N.: Short-time Fourier Transform based transient analysis of VSC interfaced point-to-point dc system. IEEE Trans. Industr. Electron. 65(5), 4080–4091 (2018)CrossRef
65.
go back to reference Ukil, A., Yeap, Y.M., Satpathi, K., Geddada, N.: Fault identification in AC and DC systems using STFT analysis of high frequency components. In: IEEE Conference on Innovative Smart Grid Technologies – Asia, ISGT-Asia, pp. 1–6 (2017) Ukil, A., Yeap, Y.M., Satpathi, K., Geddada, N.: Fault identification in AC and DC systems using STFT analysis of high frequency components. In: IEEE Conference on Innovative Smart Grid Technologies – Asia, ISGT-Asia, pp. 1–6 (2017)
66.
go back to reference Gaouda, A.M., El-Saadany, E.F., Salama, M.M.A., Sood, V.K., Chikhani, A.Y.: Monitoring HVDC systems using wavelet multi-resolution analysis. IEEE Trans. Power Syst. 16(4), 662–670 (2001)CrossRef Gaouda, A.M., El-Saadany, E.F., Salama, M.M.A., Sood, V.K., Chikhani, A.Y.: Monitoring HVDC systems using wavelet multi-resolution analysis. IEEE Trans. Power Syst. 16(4), 662–670 (2001)CrossRef
67.
go back to reference Murthy, P.K., Amarnath, J., Kamakshiah, S., Singh, B.P.: Wavelet transform approach for detection and location of faults in HVDC system. In: IEEE Region 10 and the Third international Conference on Industrial and Information Systems, Kharagpur, pp. 1–6 (2008) Murthy, P.K., Amarnath, J., Kamakshiah, S., Singh, B.P.: Wavelet transform approach for detection and location of faults in HVDC system. In: IEEE Region 10 and the Third international Conference on Industrial and Information Systems, Kharagpur, pp. 1–6 (2008)
68.
go back to reference Wang, G., Wu, M., Li, H., Hong, C.: Transient based protection for HVDC lines using wavelet-multiresolution signal decomposition. In: Proceedings IEEE/Power Engineering Society Transmission and Distribution Conference, Asia Pacific, pp. 1–4 (2005) Wang, G., Wu, M., Li, H., Hong, C.: Transient based protection for HVDC lines using wavelet-multiresolution signal decomposition. In: Proceedings IEEE/Power Engineering Society Transmission and Distribution Conference, Asia Pacific, pp. 1–4 (2005)
69.
go back to reference Cai, X., Song, G., Gao, S.: A novel fault-location method for VSC-HVDC transmission lines based on natural frequency of current. Proc. CSEE 28(31), 112–119 (2011) Cai, X., Song, G., Gao, S.: A novel fault-location method for VSC-HVDC transmission lines based on natural frequency of current. Proc. CSEE 28(31), 112–119 (2011)
70.
go back to reference Liu, X., Osman, A.H., Malik, O.P.: Hybrid traveling wave/boundary protection for monopolar HVDC line. IEEE Trans. Power Deliv. 24(2), 569–578 (2009)CrossRef Liu, X., Osman, A.H., Malik, O.P.: Hybrid traveling wave/boundary protection for monopolar HVDC line. IEEE Trans. Power Deliv. 24(2), 569–578 (2009)CrossRef
71.
go back to reference Yang, Y., Tai, N., Fan, C., Yang, L., Chen, S.: Resonance frequency-based protection scheme for ultra-high-voltage direct-current transmission lines. IET Gener. Transm. Distrib. 12(2), 318–327 (2018)CrossRef Yang, Y., Tai, N., Fan, C., Yang, L., Chen, S.: Resonance frequency-based protection scheme for ultra-high-voltage direct-current transmission lines. IET Gener. Transm. Distrib. 12(2), 318–327 (2018)CrossRef
72.
go back to reference Liu, J., Fan, C., Tai, N.: A novel pilot directional protection scheme for HVDC transmission line based on specific frequency current. In: International conference on Power System Technology, POWERCON, pp. 976–982 (2014) Liu, J., Fan, C., Tai, N.: A novel pilot directional protection scheme for HVDC transmission line based on specific frequency current. In: International conference on Power System Technology, POWERCON, pp. 976–982 (2014)
73.
go back to reference Cheng, J., Guan, M., Tang, L.V., Huang, H.: A fault location criterion for MTDC transmission lines using transient current characteristics. Int. J. Electr. Power Energy Syst. 61, 647–655 (2014)CrossRef Cheng, J., Guan, M., Tang, L.V., Huang, H.: A fault location criterion for MTDC transmission lines using transient current characteristics. Int. J. Electr. Power Energy Syst. 61, 647–655 (2014)CrossRef
74.
go back to reference Wang, D., Gao, H.L., Luo, S.B., Zou, G.B.: Travelling wave pilot protection for LCC-HVDC transmission lines based on electronic transformers differential output characteristic. Int. J. Electr. Power Energy Syst. 93, 283 (2017)CrossRef Wang, D., Gao, H.L., Luo, S.B., Zou, G.B.: Travelling wave pilot protection for LCC-HVDC transmission lines based on electronic transformers differential output characteristic. Int. J. Electr. Power Energy Syst. 93, 283 (2017)CrossRef
75.
go back to reference Farshad, M., Sadeh, J.: A novel fault-location method for HVDC transmission lines based on similarity measure of voltage signals. IEEE Trans. Power Deliv. 28(4), 2483–2490 (2013)CrossRef Farshad, M., Sadeh, J.: A novel fault-location method for HVDC transmission lines based on similarity measure of voltage signals. IEEE Trans. Power Deliv. 28(4), 2483–2490 (2013)CrossRef
76.
go back to reference Jana, S., De, A.: A novel zone division approach for power system fault detection using ANN-based pattern recognition technique. Can. J. Electr. Comput. Eng. 40(4), 275–283 (2017) Jana, S., De, A.: A novel zone division approach for power system fault detection using ANN-based pattern recognition technique. Can. J. Electr. Comput. Eng. 40(4), 275–283 (2017)
77.
go back to reference Wang, Y., Hao, Z., Zhang, B., Kong, F.: A pilot protection scheme for transmission lines in VSC-HVDC grid based on similarity measure of traveling waves. IEEE Access 7, 7147–7158 (2019)CrossRef Wang, Y., Hao, Z., Zhang, B., Kong, F.: A pilot protection scheme for transmission lines in VSC-HVDC grid based on similarity measure of traveling waves. IEEE Access 7, 7147–7158 (2019)CrossRef
78.
go back to reference Santos, R.C., Blond, S.L., Coury, D.V., Aggarwal, R.K.: A novel and comprehensive single terminal ANN based decision support for relaying of VSC based HVDC links. Electr. Power Syst. Res. 141, 333 (2016)CrossRef Santos, R.C., Blond, S.L., Coury, D.V., Aggarwal, R.K.: A novel and comprehensive single terminal ANN based decision support for relaying of VSC based HVDC links. Electr. Power Syst. Res. 141, 333 (2016)CrossRef
79.
go back to reference Tzelepis, D., Dyśko, A., Fusiek, G., Niewczas, P., Mirsaeidi, S., Booth, C., Dong, X.: Advanced fault location in MTDC networks utilizing optically-multiplexed current measurements and machine learning approach. Int. J. Electr. Power Energy Syst. 97, 319 (2018)CrossRef Tzelepis, D., Dyśko, A., Fusiek, G., Niewczas, P., Mirsaeidi, S., Booth, C., Dong, X.: Advanced fault location in MTDC networks utilizing optically-multiplexed current measurements and machine learning approach. Int. J. Electr. Power Energy Syst. 97, 319 (2018)CrossRef
80.
go back to reference Liu, X., Wei, W., Yu, F.: SVM theory and its application in fault diagnosis of HVDC system. In: 3rd International Conference on Natural Computation, ICNC 2007, Haikou, pp. 665–669 (2007) Liu, X., Wei, W., Yu, F.: SVM theory and its application in fault diagnosis of HVDC system. In: 3rd International Conference on Natural Computation, ICNC 2007, Haikou, pp. 665–669 (2007)
81.
go back to reference Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)CrossRef Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)CrossRef
84.
go back to reference Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1), 23–69 (2003)MATHCrossRef Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1), 23–69 (2003)MATHCrossRef
85.
go back to reference Abdelgayed, T.S., Morsi, W.G., Sidhu, T.S.: Fault detection and classification based on co-training of semi supervised machine learning. IEEE Trans. Industr. Electron. 65(2), 1595–1605 (2018)CrossRef Abdelgayed, T.S., Morsi, W.G., Sidhu, T.S.: Fault detection and classification based on co-training of semi supervised machine learning. IEEE Trans. Industr. Electron. 65(2), 1595–1605 (2018)CrossRef
86.
go back to reference Jarrahi, M.A., Samet, H., Ghanbari, T.: Fast current-only based fault detection method in transmission line. IEEE Syst. J. 13(2), 1725–1736 (2019)CrossRef Jarrahi, M.A., Samet, H., Ghanbari, T.: Fast current-only based fault detection method in transmission line. IEEE Syst. J. 13(2), 1725–1736 (2019)CrossRef
87.
go back to reference Chen, M., Lan, S., Chen, D.: Machine learning based one-terminal fault areas detection in HVDC transmission system. In: 8th International Conference on Power and Energy Systems, ICPES, Colombo, Sri Lanka, pp. 278–282 (2018) Chen, M., Lan, S., Chen, D.: Machine learning based one-terminal fault areas detection in HVDC transmission system. In: 8th International Conference on Power and Energy Systems, ICPES, Colombo, Sri Lanka, pp. 278–282 (2018)
88.
go back to reference Padiyar, K.R., Prabhu, N.: Modelling, control design and analysis of VSC based HVDC transmission systems. In: International Conference on Power System Technology, PowerCon 2004, vol. 11, pp. 774–779 (2004) Padiyar, K.R., Prabhu, N.: Modelling, control design and analysis of VSC based HVDC transmission systems. In: International Conference on Power System Technology, PowerCon 2004, vol. 11, pp. 774–779 (2004)
89.
go back to reference Meier, S.: Novel voltage source converter based HVDC transmission system for offshore wind farms. Department of Electrical Engineering Electrical Machines and Power Electronics, Royal Institute of Technology, Stockholm (2005) Meier, S.: Novel voltage source converter based HVDC transmission system for offshore wind farms. Department of Electrical Engineering Electrical Machines and Power Electronics, Royal Institute of Technology, Stockholm (2005)
90.
go back to reference Undeland, N.M.T., Robbins, W.: Power Electronics: Converters, Applications, and Design (2003) Undeland, N.M.T., Robbins, W.: Power Electronics: Converters, Applications, and Design (2003)
91.
go back to reference Mohamed, Z.S.A.K., Samir, H., Karim, F.M., Rabie, A.: Performance analysis of a voltage source converter (VSC) based HVDC transmission system under faulted conditions. Leonardo J. Sci., 33–46 (2009) Mohamed, Z.S.A.K., Samir, H., Karim, F.M., Rabie, A.: Performance analysis of a voltage source converter (VSC) based HVDC transmission system under faulted conditions. Leonardo J. Sci., 33–46 (2009)
92.
go back to reference Ana-Irina Stan, D. I. S.: Control of VSC-based HVDC transmission system for offshore wind power plants. Department of Energy Technology, Aalborg University, Denmark (2010) Ana-Irina Stan, D. I. S.: Control of VSC-based HVDC transmission system for offshore wind power plants. Department of Energy Technology, Aalborg University, Denmark (2010)
93.
go back to reference Cuiqing, D., et al.: A new control strategy of a VSC-HVDC system for high quality supply of industrial plants. IEEE Trans. Power Deliv. 22, 2386–2394 (2007) Cuiqing, D., et al.: A new control strategy of a VSC-HVDC system for high quality supply of industrial plants. IEEE Trans. Power Deliv. 22, 2386–2394 (2007)
94.
go back to reference Bajracharya, C.: Control of VSC-HVDC for wind power. Master of Science in Energy and Environment, Department of Electrical Power Engineering, Norwegian University of Science and Technology, Trondheim (2008) Bajracharya, C.: Control of VSC-HVDC for wind power. Master of Science in Energy and Environment, Department of Electrical Power Engineering, Norwegian University of Science and Technology, Trondheim (2008)
95.
go back to reference De Oliveira Filho, M.E., et al.: A control method for voltage source inverter without dc link capacitor. In Power Electronics Specialists Conference, pp. 4432–4437 (2008) De Oliveira Filho, M.E., et al.: A control method for voltage source inverter without dc link capacitor. In Power Electronics Specialists Conference, pp. 4432–4437 (2008)
96.
go back to reference Machaba, M.B.M.: Explicit damping factor specification in symmetrical optimum tuning of PI controllers. In: 1st African Control Conference, Cape Town, South Africa (2003) Machaba, M.B.M.: Explicit damping factor specification in symmetrical optimum tuning of PI controllers. In: 1st African Control Conference, Cape Town, South Africa (2003)
97.
go back to reference Namho, H., et al.: Fast dynamic DC-link power balancing scheme for a PWM converter inverter system. Proc. Ind. Electron. Soc. 2, 767–772 (1999) Namho, H., et al.: Fast dynamic DC-link power balancing scheme for a PWM converter inverter system. Proc. Ind. Electron. Soc. 2, 767–772 (1999)
98.
go back to reference Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ACM 2007 (2007) Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ACM 2007 (2007)
99.
go back to reference Mobahi, H., Collobert, R. (eds.): Deep learning from temporal coherence in video. In: International Conference on Machine Learning, ACM 09, Canada (2009) Mobahi, H., Collobert, R. (eds.): Deep learning from temporal coherence in video. In: International Conference on Machine Learning, ACM 09, Canada (2009)
100.
go back to reference Larochelle, H., Bengio, Y. (eds.): Classification using discriminative restricted Boltzmann machines. In: Proceedings of the 25th International Conference on Machine Learning, ACM 2008, Helsinki, Finland (2008) Larochelle, H., Bengio, Y. (eds.): Classification using discriminative restricted Boltzmann machines. In: Proceedings of the 25th International Conference on Machine Learning, ACM 2008, Helsinki, Finland (2008)
101.
go back to reference Larochelle, H., Mandel, M.I. (eds.): Learning algorithms for the classification restricted Boltzmann machine. J. Mach. Learn. Res. 13, 643–669 (2012) Larochelle, H., Mandel, M.I. (eds.): Learning algorithms for the classification restricted Boltzmann machine. J. Mach. Learn. Res. 13, 643–669 (2012)
102.
103.
go back to reference Lei, Y., Jia, F., Lin, J., Xing, S., Ding, S.X.: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63(5), 3137–3147 (2016)CrossRef Lei, Y., Jia, F., Lin, J., Xing, S., Ding, S.X.: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Trans. Industr. Electron. 63(5), 3137–3147 (2016)CrossRef
104.
go back to reference Wong, K.P.: Artificial intelligence and neural network applications in power systems. In: 2nd International Conference on Advances in Power System Control, Operation and Management, APSCOM 1993, vol. 1, Hong Kong, pp. 37–46 (1993) Wong, K.P.: Artificial intelligence and neural network applications in power systems. In: 2nd International Conference on Advances in Power System Control, Operation and Management, APSCOM 1993, vol. 1, Hong Kong, pp. 37–46 (1993)
105.
go back to reference Hinton, G.E.: Training products of experts by minimizing contrastive divergence. J. Neural Comput. 14(8), 1771–1800 (2002)MATHCrossRef Hinton, G.E.: Training products of experts by minimizing contrastive divergence. J. Neural Comput. 14(8), 1771–1800 (2002)MATHCrossRef
Metadata
Title
Restricted Boltzmann Machines Based Fault Estimation in Multi Terminal HVDC Transmission System
Author
Raheel Muzzammel
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5232-8_66

Premium Partner