Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Production Engineering 5/2021

09-04-2021 | Production Process

Reusable unit process life cycle inventory (UPLCI) for manufacturing: laser powder bed fusion (L-PBF)

Authors: Erick Ramirez-Cedillo, Erika García-López, Leopoldo Ruiz-Huerta, Ciro A. Rodriguez, Hector R. Siller

Published in: Production Engineering | Issue 5/2021

Login to get access
share
SHARE

Abstract

In many industrial applications, laser powder bed fusion (L-PBF) has been recognized for its flexibility in Net Shape Manufacturing. During the process, the feedstock is deposited and selectively fused with a thermal joining via laser power. In this work, the unit process life cycle inventory methodology (UPLCI) was used to discretize energy consumption and material losses for modeling the L-PBF process. A reusable approach in terms of materials, parameters, and calculation tools is presented, to estimate the energy consumption and mass loss in practical evaluations of production lines. Calculations of energy were obtained and classified as basic, idle, and active energy. Theoretical equations were also shown to relate the most important parameters of the process with its energy consumption. Finally, a case study is presented to analyze the UPLCI capacity to improve energy consumption in the manufacturing of medical devices.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference ASTM International (2015) ASTM52900–15. Standard terminology for additive manufacturing—general principles—terminology. West Conshohocken, PA ASTM International (2015) ASTM52900–15. Standard terminology for additive manufacturing—general principles—terminology. West Conshohocken, PA
2.
go back to reference Campbell I, Diegel O, Kowen J, Wohlers T (2018) Wohlers report 2018: 3D printing and additive manufacturing state of the industry: Annual worldwide progress report. Wohlers Associates Campbell I, Diegel O, Kowen J, Wohlers T (2018) Wohlers report 2018: 3D printing and additive manufacturing state of the industry: Annual worldwide progress report. Wohlers Associates
3.
go back to reference Tanchev L (2007) Virtual and rapid manufacturing: advanced research in virtual and rapid prototyping. CRC Press, London CrossRef Tanchev L (2007) Virtual and rapid manufacturing: advanced research in virtual and rapid prototyping. CRC Press, London CrossRef
4.
go back to reference Faludi J, Baumers M, Maskery I, Hague R (2017) Environmental impacts of selective laser melting: do printer, powder, or power dominate? J Ind Ecol 21:S144–S156 CrossRef Faludi J, Baumers M, Maskery I, Hague R (2017) Environmental impacts of selective laser melting: do printer, powder, or power dominate? J Ind Ecol 21:S144–S156 CrossRef
5.
go back to reference Liu ZY, Li C, Fang XY, Guo YB (2018) Energy consumption in additive manufacturing of metal parts. Procedia Manuf 26:834–845 CrossRef Liu ZY, Li C, Fang XY, Guo YB (2018) Energy consumption in additive manufacturing of metal parts. Procedia Manuf 26:834–845 CrossRef
6.
go back to reference Cerdas F, Juraschek M, Thiede S, Herrmann C (2017) Life cycle assessment of 3D printed products in a distributed manufacturing system. J Ind Ecol 21:S80–S93 CrossRef Cerdas F, Juraschek M, Thiede S, Herrmann C (2017) Life cycle assessment of 3D printed products in a distributed manufacturing system. J Ind Ecol 21:S80–S93 CrossRef
7.
go back to reference Telenko C, Seepersad CC (2012) A comparison of the energy efficiency of selective laser sintering and injection molding of nylon parts. Rapid Prototyp J 18:472–481 CrossRef Telenko C, Seepersad CC (2012) A comparison of the energy efficiency of selective laser sintering and injection molding of nylon parts. Rapid Prototyp J 18:472–481 CrossRef
8.
go back to reference Torres-Carrillo S, Siller HR, Vila C, Lopez C, Rodríguez CA (2020) Environmental analysis of selective laser melting in the manufacturingof aeronautical turbine blades. J Clean Prod 246:119068 CrossRef Torres-Carrillo S, Siller HR, Vila C, Lopez C, Rodríguez CA (2020) Environmental analysis of selective laser melting in the manufacturingof aeronautical turbine blades. J Clean Prod 246:119068 CrossRef
9.
go back to reference Kellens K, Yasa E, Renaldi R, et al (2011) Energy and resource efficiency of SLS/SLM processes (keynote paper). In: SFF Symposium 2011. pp 1–16 Kellens K, Yasa E, Renaldi R, et al (2011) Energy and resource efficiency of SLS/SLM processes (keynote paper). In: SFF Symposium 2011. pp 1–16
10.
go back to reference Baumers M, Tuck C, Hague R, et al (2010) A comparative study of metallic additive manufacturing power consumption. In: Solid freeform fabrication proceedings. University of Texas, pp 278–288 Baumers M, Tuck C, Hague R, et al (2010) A comparative study of metallic additive manufacturing power consumption. In: Solid freeform fabrication proceedings. University of Texas, pp 278–288
11.
go back to reference Paul R, Anand S (2015) A combined energy and error optimization method for metal powder based additive manufacturing processes. Rapid Prototyp J 21:301–312 CrossRef Paul R, Anand S (2015) A combined energy and error optimization method for metal powder based additive manufacturing processes. Rapid Prototyp J 21:301–312 CrossRef
12.
go back to reference Baumers M, Tuck C, Wildman R, et al (2011) Energy inputs to additive manufacturing: does capacity utilization matter. In: Proceedings of the solid freeform fabrication (SFF) symposium. University of Texas, pp 30–40 Baumers M, Tuck C, Wildman R, et al (2011) Energy inputs to additive manufacturing: does capacity utilization matter. In: Proceedings of the solid freeform fabrication (SFF) symposium. University of Texas, pp 30–40
13.
go back to reference Baumers M, Tuck C, Wildman R et al (2013) Transparency built-in: energy consumption and cost estimation for additive manufacturing. J Ind Ecol 17:418–431 CrossRef Baumers M, Tuck C, Wildman R et al (2013) Transparency built-in: energy consumption and cost estimation for additive manufacturing. J Ind Ecol 17:418–431 CrossRef
14.
go back to reference Huang R, Riddle M, Graziano D et al (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570 CrossRef Huang R, Riddle M, Graziano D et al (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570 CrossRef
15.
go back to reference Muthu SS, Savalani MM (2016) Handbook of sustainability in additive manufacturing. Springer, Singapore CrossRef Muthu SS, Savalani MM (2016) Handbook of sustainability in additive manufacturing. Springer, Singapore CrossRef
16.
go back to reference Linke B, Overcash M (2017) Reusable unit process life cycle inventory for manufacturing: grinding. Prod Eng 11:643–653 CrossRef Linke B, Overcash M (2017) Reusable unit process life cycle inventory for manufacturing: grinding. Prod Eng 11:643–653 CrossRef
17.
go back to reference Zhang H, Zhao F (2019) Reusable unit process life cycle inventory for manufacturing: gas metal arc welding. Prod Eng 13:89–97 CrossRef Zhang H, Zhao F (2019) Reusable unit process life cycle inventory for manufacturing: gas metal arc welding. Prod Eng 13:89–97 CrossRef
18.
go back to reference Simon T, Yang Y, Lee WJ et al (2019) Reusable unit process life cycle inventory for manufacturing: stereolithography. Prod Eng 13:675–684 CrossRef Simon T, Yang Y, Lee WJ et al (2019) Reusable unit process life cycle inventory for manufacturing: stereolithography. Prod Eng 13:675–684 CrossRef
19.
go back to reference Raman AS, Harper D, Haapala KR, et al (2019) Challenges in representing manufacturing processes for systematic sustainability assessments: workshop on June 21, 2018. In: ASME 2019 14th international manufacturing science and engineering conference. American Society of Mechanical Engineers Digital Collection Raman AS, Harper D, Haapala KR, et al (2019) Challenges in representing manufacturing processes for systematic sustainability assessments: workshop on June 21, 2018. In: ASME 2019 14th international manufacturing science and engineering conference. American Society of Mechanical Engineers Digital Collection
20.
go back to reference Lee H, Lim CHJ, Low MJ et al (2017) Lasers in additive manufacturing: a review. Int J Precis Eng Manuf Green Technol 4:307–322 CrossRef Lee H, Lim CHJ, Low MJ et al (2017) Lasers in additive manufacturing: a review. Int J Precis Eng Manuf Green Technol 4:307–322 CrossRef
21.
go back to reference Segura-Cardenas E, Ramirez-Cedillo EG, Sandoval-Robles JA et al (2017) Permeability study of austenitic stainless steel surfaces produced by selective laser melting. Metals 7:521 CrossRef Segura-Cardenas E, Ramirez-Cedillo EG, Sandoval-Robles JA et al (2017) Permeability study of austenitic stainless steel surfaces produced by selective laser melting. Metals 7:521 CrossRef
22.
go back to reference Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost-model for selective laser melting (SLM). Rapid Prototyp J 19:208–214 CrossRef Rickenbacher L, Spierings A, Wegener K (2013) An integrated cost-model for selective laser melting (SLM). Rapid Prototyp J 19:208–214 CrossRef
23.
go back to reference Khorasani AM, Gibson I, Awan US, Ghaderi A (2018) The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit Manuf 25:176–186 Khorasani AM, Gibson I, Awan US, Ghaderi A (2018) The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit Manuf 25:176–186
24.
go back to reference Cherry JA, Davies HM, Mehmood S et al (2015) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76:869–879 CrossRef Cherry JA, Davies HM, Mehmood S et al (2015) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76:869–879 CrossRef
25.
go back to reference Peng T, Chen C (2018) Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int J Precis Eng Manuf Green Technol 5:55–62 CrossRef Peng T, Chen C (2018) Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int J Precis Eng Manuf Green Technol 5:55–62 CrossRef
26.
go back to reference Ilie A, Ali H, Mumtaz K (2017) In-built customised mechanical failure of 316L components fabricated using selective laser melting. Technologies 5:9–21 CrossRef Ilie A, Ali H, Mumtaz K (2017) In-built customised mechanical failure of 316L components fabricated using selective laser melting. Technologies 5:9–21 CrossRef
27.
go back to reference Ramirez-Cedillo E, Sandoval-Robles JA, Ruiz-Huerta L et al (2018) Process planning guidelines in selective laser melting for the manufacturing of stainless steel parts. Procedia Manuf 26:973–982 CrossRef Ramirez-Cedillo E, Sandoval-Robles JA, Ruiz-Huerta L et al (2018) Process planning guidelines in selective laser melting for the manufacturing of stainless steel parts. Procedia Manuf 26:973–982 CrossRef
28.
go back to reference Meier H, Haberland C (2008) Experimental studies on selective laser melting of metallic parts. Mat-wiss u Werkstofftech 39:665–670 CrossRef Meier H, Haberland C (2008) Experimental studies on selective laser melting of metallic parts. Mat-wiss u Werkstofftech 39:665–670 CrossRef
29.
go back to reference Junfeng L, Zhengying W (2017) Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting. IOP Conf Ser Mater Sci Eng. 269:012026 CrossRef Junfeng L, Zhengying W (2017) Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting. IOP Conf Ser Mater Sci Eng. 269:012026 CrossRef
30.
go back to reference Do DK, Li P (2016) The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting. Virtual Phys Prototyp 11:41–47 CrossRef Do DK, Li P (2016) The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting. Virtual Phys Prototyp 11:41–47 CrossRef
31.
go back to reference Han J, Yang J, Yu H et al (2017) Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density. Rapid Prototyp J 23:217–226 CrossRef Han J, Yang J, Yu H et al (2017) Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density. Rapid Prototyp J 23:217–226 CrossRef
32.
go back to reference Kasperovich G, Haubrich J, Gussone J, Requena G (2016) Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des 105:160–170 CrossRef Kasperovich G, Haubrich J, Gussone J, Requena G (2016) Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des 105:160–170 CrossRef
33.
go back to reference Mishurova T, Cabeza S, Artzt K et al (2017) An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials 10:348–362 CrossRef Mishurova T, Cabeza S, Artzt K et al (2017) An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials 10:348–362 CrossRef
34.
go back to reference Vandenbroucke B, Kruth J (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13:196–203 CrossRef Vandenbroucke B, Kruth J (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13:196–203 CrossRef
35.
go back to reference Liverani E, Fortunato A, Leardini A et al (2016) Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM). Mater Des 106:60–68 CrossRef Liverani E, Fortunato A, Leardini A et al (2016) Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM). Mater Des 106:60–68 CrossRef
36.
go back to reference Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 65:417–424 CrossRef Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 65:417–424 CrossRef
37.
go back to reference Koutiri I, Pessard E, Peyre P et al (2018) Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J Mater Process Technol 255:536–546 CrossRef Koutiri I, Pessard E, Peyre P et al (2018) Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J Mater Process Technol 255:536–546 CrossRef
38.
go back to reference Yusuf S, Chen Y, Boardman R et al (2017) Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting. Metals 7:64 CrossRef Yusuf S, Chen Y, Boardman R et al (2017) Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting. Metals 7:64 CrossRef
39.
go back to reference Sůkal J, Paloušek D, Koutny D (2018) The effect of recycling powder steel on porosity and surface roughness of SLM parts. MM Sci J 12:2643–2647 CrossRef Sůkal J, Paloušek D, Koutny D (2018) The effect of recycling powder steel on porosity and surface roughness of SLM parts. MM Sci J 12:2643–2647 CrossRef
40.
go back to reference Kruth J, Mercelis P, Vaerenbergh JV et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36 CrossRef Kruth J, Mercelis P, Vaerenbergh JV et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36 CrossRef
Metadata
Title
Reusable unit process life cycle inventory (UPLCI) for manufacturing: laser powder bed fusion (L-PBF)
Authors
Erick Ramirez-Cedillo
Erika García-López
Leopoldo Ruiz-Huerta
Ciro A. Rodriguez
Hector R. Siller
Publication date
09-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Production Engineering / Issue 5/2021
Print ISSN: 0944-6524
Electronic ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-021-01050-6

Other articles of this Issue 5/2021

Production Engineering 5/2021 Go to the issue

Premium Partners