Skip to main content
Top

2024 | OriginalPaper | Chapter

Reversible Random Number Generation for Adjoint Monte Carlo Simulation of the Heat Equation

Authors : Emil Løvbak, Frédéric Blondeel, Adam Lee, Lander Vanroye, Andreas Van Barel, Giovanni Samaey

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In PDE-constrained optimization, one aims to find design parameters that minimize some objective, subject to the satisfaction of a partial differential equation. A major challenge is computing gradients of the objective to the design parameters, as applying the chain rule requires computing the Jacobian of the design parameters to the PDE’s state. The adjoint method avoids this Jacobian by computing partial derivatives of a Lagrangian. Evaluating these derivatives requires the solution of a second PDE with the adjoint differential operator to the constraint, resulting in a backwards-in-time simulation. Particle-based Monte Carlo solvers are often used to compute the solution to high-dimensional PDEs. However, such solvers have the drawback of introducing noise to the computed results, thus requiring stochastic optimization methods. To guarantee convergence in this setting, both the constraint and adjoint Monte Carlo simulations should simulate the same particle trajectories. For large simulations, storing full paths from the constraint equation for re-use in the adjoint equation becomes infeasible due to memory limitations. In this paper, we provide a reversible extension to the family of permuted congruential pseudorandom number generators (PCG). We then use such a generator to recompute these time-reversed paths for the heat equation, avoiding these memory issues.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blackman, D., Vigna, S.: Scrambled linear pseudorandom number generators. ACM Trans. Math. Softw. 47(4), 1–32 (2021)MathSciNetCrossRef Blackman, D., Vigna, S.: Scrambled linear pseudorandom number generators. ACM Trans. Math. Softw. 47(4), 1–32 (2021)MathSciNetCrossRef
2.
go back to reference Blondeel, F.: Monte Carlo Adjoint Computation for PDE-Constrained Optimization using Reversible Random Number Generators. Master’s thesis, KU Leuven, Leuven (2022) Blondeel, F.: Monte Carlo Adjoint Computation for PDE-Constrained Optimization using Reversible Random Number Generators. Master’s thesis, KU Leuven, Leuven (2022)
3.
go back to reference Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)MathSciNetCrossRef Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)MathSciNetCrossRef
4.
go back to reference Bouillaguet, C., Martinez, F., Sauvage, J.: Practical seed-recovery for the PCG pseudo-random number generator. IACR Trans. Symmetric Cryptol. 2020(3), 175–196 (2020)CrossRef Bouillaguet, C., Martinez, F., Sauvage, J.: Practical seed-recovery for the PCG pseudo-random number generator. IACR Trans. Symmetric Cryptol. 2020(3), 175–196 (2020)CrossRef
5.
go back to reference Brown, F.B.: Random number generation with arbitrary strides. Trans. Am. Nucl. Soc. 71, 202–203 (1994) Brown, F.B.: Random number generation with arbitrary strides. Trans. Am. Nucl. Soc. 71, 202–203 (1994)
6.
go back to reference Caflisch, R., Silantyev, D., Yang, Y.: Adjoint DSMC for nonlinear Boltzmann equation constrained optimization. J. Comput. Phys. 439, 110404 (2021)MathSciNetCrossRef Caflisch, R., Silantyev, D., Yang, Y.: Adjoint DSMC for nonlinear Boltzmann equation constrained optimization. J. Comput. Phys. 439, 110404 (2021)MathSciNetCrossRef
8.
go back to reference Dekeyser, W., Blommaert, M., Ghoos, K., Horsten, N., Boerner, P., Samaey, G., Baelmans, M.: Divertor design through adjoint approaches and efficient code simulation strategies. Contrib. Plasma Phys. 58(6–8), 643–651 (2018)CrossRef Dekeyser, W., Blommaert, M., Ghoos, K., Horsten, N., Boerner, P., Samaey, G., Baelmans, M.: Divertor design through adjoint approaches and efficient code simulation strategies. Contrib. Plasma Phys. 58(6–8), 643–651 (2018)CrossRef
10.
go back to reference Feng, Y., Sardei, F., Kisslinger, J., Grigull, P.: A 3D Monte Carlo code for plasma transport in island divertors. J. Nucl. Mater. 241–243, 930–934 (1997)CrossRef Feng, Y., Sardei, F., Kisslinger, J., Grigull, P.: A 3D Monte Carlo code for plasma transport in island divertors. J. Nucl. Mater. 241–243, 930–934 (1997)CrossRef
11.
go back to reference Gebremedhin, A.H., Walther, A.: An introduction to algorithmic differentiation. WIREs Data Min. Knowl. Discov. 10(1), e1334 (2020)CrossRef Gebremedhin, A.H., Walther, A.: An introduction to algorithmic differentiation. WIREs Data Min. Knowl. Discov. 10(1), e1334 (2020)CrossRef
12.
go back to reference Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Statistics and Computing. Springer, New York, NY (2003) Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Statistics and Computing. Springer, New York, NY (2003)
13.
go back to reference Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65, 393–415 (2000)CrossRef Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65, 393–415 (2000)CrossRef
15.
go back to reference L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 1–40 (2007)MathSciNetCrossRef L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 1–40 (2007)MathSciNetCrossRef
16.
go back to reference L’Ecuyer, P., Touzin, R.: Fast combined multiple recursive generators with multipliers of the form \(a=\pm 2^{q}\pm 2^{r}\). In: Proceedings of the 32nd Conference on Winter Simulation, vol. 1, pp. 683–689. IEEE, Orlando, Florida (2000) L’Ecuyer, P., Touzin, R.: Fast combined multiple recursive generators with multipliers of the form \(a=\pm 2^{q}\pm 2^{r}\). In: Proceedings of the 32nd Conference on Winter Simulation, vol. 1, pp. 683–689. IEEE, Orlando, Florida (2000)
17.
go back to reference Lee, A.: Reversible Random Number Generators for Monte Carlo Particle Simulations in Optimization. Master’s thesis, KU Leuven, Leuven (2022) Lee, A.: Reversible Random Number Generators for Monte Carlo Particle Simulations in Optimization. Master’s thesis, KU Leuven, Leuven (2022)
18.
go back to reference Marsaglia, G.: Generating a variable from the tail of the normal distribution. Technometrics 6(1), 101–102 (1964) Marsaglia, G.: Generating a variable from the tail of the normal distribution. Technometrics 6(1), 101–102 (1964)
19.
go back to reference Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000)CrossRef Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000)CrossRef
20.
go back to reference Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)CrossRef Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)CrossRef
21.
go back to reference Naumann, U., du Toit, J.: Adjoint algorithmic differentiation tool support for typical numerical patterns in computational finance. J. Comput. Finance 21(4), 23–57 (2018)CrossRef Naumann, U., du Toit, J.: Adjoint algorithmic differentiation tool support for typical numerical patterns in computational finance. J. Comput. Finance 21(4), 23–57 (2018)CrossRef
23.
go back to reference O’Neill, M.E.: PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation. Tech. Rep. HMC-CS-2014-0905, Harvey Mudd College, Claremont, CA (2014) O’Neill, M.E.: PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation. Tech. Rep. HMC-CS-2014-0905, Harvey Mudd College, Claremont, CA (2014)
25.
go back to reference Reiter, D., Baelmans, M., Börner, P.: The EIRENE and B2-EIRENE codes. Fusion Sci. Technol. 47(2), 172–186 (2005)CrossRef Reiter, D., Baelmans, M., Börner, P.: The EIRENE and B2-EIRENE codes. Fusion Sci. Technol. 47(2), 172–186 (2005)CrossRef
26.
go back to reference Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers: as easy as 1, 2, 3. In: SC ’11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p. 12 (2011) Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers: as easy as 1, 2, 3. In: SC ’11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, p. 12 (2011)
27.
go back to reference Steele, G.L., Lea, D., Flood, C.H.: Fast splittable pseudorandom number generators. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, pp. 453–472. ACM, Portland Oregon USA (2014) Steele, G.L., Lea, D., Flood, C.H.: Fast splittable pseudorandom number generators. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, pp. 453–472. ACM, Portland Oregon USA (2014)
28.
go back to reference Vanroye, L.: Adjointgebaseerde optimalisatie van PDE-beperkte optimalisatieproblemen met Monte-Carlomethodes. Master’s thesis, KU Leuven, Leuven (2019) Vanroye, L.: Adjointgebaseerde optimalisatie van PDE-beperkte optimalisatieproblemen met Monte-Carlomethodes. Master’s thesis, KU Leuven, Leuven (2019)
30.
go back to reference Yoginath, S.B., Perumalla, K.S.: Efficient reversible uniform and non-uniform random number generation in UNU.RAN. In: Proceedings of the Annual Simulation Symposium, ANSS ’18, pp. 1–10. Society for Computer Simulation International, San Diego, California (2018) Yoginath, S.B., Perumalla, K.S.: Efficient reversible uniform and non-uniform random number generation in UNU.RAN. In: Proceedings of the Annual Simulation Symposium, ANSS ’18, pp. 1–10. Society for Computer Simulation International, San Diego, California (2018)
Metadata
Title
Reversible Random Number Generation for Adjoint Monte Carlo Simulation of the Heat Equation
Authors
Emil Løvbak
Frédéric Blondeel
Adam Lee
Lander Vanroye
Andreas Van Barel
Giovanni Samaey
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_22

Premium Partner