Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 4/2022

01-04-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Review of Modern Theoretical Approaches for Study of Magnetocaloric Materials

Authors: V. V. Sokolovskiy, O. N. Miroshkina, V. D. Buchelnikov

Published in: Physics of Metals and Metallography | Issue 4/2022

Login to get access
share
SHARE

Abstract

For a quarter-century since the discovery of the giant magnetocaloric effect (MCE), the world scientific community has paid great attention to comprehensive studies of magnetically ordered compounds with a first-order magnetostructural phase transformation. The interest in the study is due both to the potential application of the MCE in magnetic cooling technology and the need to provide a deeper understanding of the fundamental concepts of the problems and mechanisms underlying the magnetostructural transition. This review covers the thermodynamic foundations of the MCE, a comparative analysis of magnetocaloric materials with magnetostructural phase transitions, and outlines the phenomenological and microscopic models for predicting magnetocaloric properties developed by the global scientific community over the past 20 years.
Literature
1.
go back to reference K. A. Gschneidner Jr. and V. K. Pecharsky, “Magnetocaloric materials,” Annu. Rev. Mater. Sci. 30 (1), 387–429 (2000). CrossRef K. A. Gschneidner Jr. and V. K. Pecharsky, “Magnetocaloric materials,” Annu. Rev. Mater. Sci. 30 (1), 387–429 (2000). CrossRef
2.
go back to reference A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer, Cham, 2016). A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer, Cham, 2016).
3.
go back to reference V. K. Pecharsky and K. A. Gschneidner, Jr., “Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K,” Appl. Phys. Lett. 70 (24), 3299–3301 (1997). CrossRef V. K. Pecharsky and K. A. Gschneidner, Jr., “Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K,” Appl. Phys. Lett. 70 (24), 3299–3301 (1997). CrossRef
4.
go back to reference O. Tegus, E. Brück, L. Zhang, K. H. J. Buschow, and F. R. De Boer, “Magnetic-phase transitions and magnetocaloric effects,” Phys. B (Amsterdam) 319 (1–4), 174–192 (2002). CrossRef O. Tegus, E. Brück, L. Zhang, K. H. J. Buschow, and F. R. De Boer, “Magnetic-phase transitions and magnetocaloric effects,” Phys. B (Amsterdam) 319 (1–4), 174–192 (2002). CrossRef
5.
go back to reference B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig. 26 (6), 622–636 (2003). CrossRef B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig. 26 (6), 622–636 (2003). CrossRef
6.
go back to reference K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68 (6), 1479–1539 (2005). CrossRef K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68 (6), 1479–1539 (2005). CrossRef
7.
go back to reference K. A. Gschneidner Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” Int. J. Refrig. 31 (6), 945–961 (2008). CrossRef K. A. Gschneidner Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” Int. J. Refrig. 31 (6), 945–961 (2008). CrossRef
8.
go back to reference A. Planes, L. Mañosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Condens. Matter Phys. 21 (23), 233201 (2009). CrossRef A. Planes, L. Mañosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Condens. Matter Phys. 21 (23), 233201 (2009). CrossRef
9.
go back to reference V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011). CrossRef V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011). CrossRef
10.
go back to reference V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models,” Annu. Rev. Mater. Res. 42, 305–342 (2012). CrossRef V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models,” Annu. Rev. Mater. Res. 42, 305–342 (2012). CrossRef
11.
go back to reference K. G. Sandeman, “Magnetocaloric materials: the search for new systems,” Scr. Mater. 67 (6), 566–571 (2012). CrossRef K. G. Sandeman, “Magnetocaloric materials: the search for new systems,” Scr. Mater. 67 (6), 566–571 (2012). CrossRef
12.
go back to reference V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014). CrossRef V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014). CrossRef
13.
go back to reference X. Moya, S. Kar-Narayan, and N. D. Mathur, “Caloric materials near ferroic phase transitions,” Nat. Mater. 13 (5), 439–450 (2014). CrossRef X. Moya, S. Kar-Narayan, and N. D. Mathur, “Caloric materials near ferroic phase transitions,” Nat. Mater. 13 (5), 439–450 (2014). CrossRef
14.
go back to reference O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc., A 374 (2074), 20150308 (2016). O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc., A 374 (2074), 20150308 (2016).
15.
go back to reference J. Lyubina, “Magnetocaloric materials for energy efficient cooling,” J. Phys. D: Appl. Phys. 50 (5), 053002 (2017). CrossRef J. Lyubina, “Magnetocaloric materials for energy efficient cooling,” J. Phys. D: Appl. Phys. 50 (5), 053002 (2017). CrossRef
16.
go back to reference V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018). CrossRef
17.
go back to reference F. Scheibel, T. Gottschall, A. Taubel, M. Fries, K. P. Skokov, A. Terwey, W. Keune, K. Ollefs, H. Wende, M. Farle, M. Acet, O. Gutfleisch, and M. E. Gruner, “Hysteresis design of magnetocaloric materials—From basic mechanisms to applications,” Energy Technol. 6 (8), 1397–1428 (2018). CrossRef F. Scheibel, T. Gottschall, A. Taubel, M. Fries, K. P. Skokov, A. Terwey, W. Keune, K. Ollefs, H. Wende, M. Farle, M. Acet, O. Gutfleisch, and M. E. Gruner, “Hysteresis design of magnetocaloric materials—From basic mechanisms to applications,” Energy Technol. 6 (8), 1397–1428 (2018). CrossRef
18.
go back to reference T. Gottschall, K. P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, “Making a cool choice: the materials library of magnetic refrigeration,” Adv. Energy Mater. 9 (34), 1901322 (2019). CrossRef T. Gottschall, K. P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, “Making a cool choice: the materials library of magnetic refrigeration,” Adv. Energy Mater. 9 (34), 1901322 (2019). CrossRef
19.
go back to reference N. A. Zarkevich and V. I. Zverev, “Viable materials with a giant magnetocaloric effect,” Crystals 10 (9), 815–830 (2020). CrossRef N. A. Zarkevich and V. I. Zverev, “Viable materials with a giant magnetocaloric effect,” Crystals 10 (9), 815–830 (2020). CrossRef
20.
go back to reference A. Kitanovsky, “Applications of magnetocaloric materials,” in Encyclopedia of Smart Materials, Vol. 5: Magnetic Materials and Smart Materials for Specific Applications (Elsevier, Amsterdam, 2022), pp. 418–432. A. Kitanovsky, “Applications of magnetocaloric materials,” in Encyclopedia of Smart Materials, Vol. 5: Magnetic Materials and Smart Materials for Specific Applications (Elsevier, Amsterdam, 2022), pp. 418–432.
21.
go back to reference V.V. Khovaylo and S. V. Taskaev, “Magnetic refrigeration: from theory to applications,” in Encyclopedia of Smart Materials (Elsevier, Oxford, 2022), pp. 407–417. V.V. Khovaylo and S. V. Taskaev, “Magnetic refrigeration: from theory to applications,” in Encyclopedia of Smart Materials (Elsevier, Oxford, 2022), pp. 407–417.
22.
go back to reference P. Entel, M. E. Gruner, S. Fähler, M. Acet, A. Çahır, R. Arróyave, S. Sahoo, T. C. Duong, A. Talapatra, L. Sandratskii, S. Mankowsky, T. Gottschall, O. Gutfleisch, P. Lázpita, V. A. Chernenko, et al., “Probing structural and magnetic instabilities and hysteresis in Heuslers by density functional theory calculations,” Phys. Status Solidi B 255 (2), 1700296 (2018). CrossRef P. Entel, M. E. Gruner, S. Fähler, M. Acet, A. Çahır, R. Arróyave, S. Sahoo, T. C. Duong, A. Talapatra, L. Sandratskii, S. Mankowsky, T. Gottschall, O. Gutfleisch, P. Lázpita, V. A. Chernenko, et al., “Probing structural and magnetic instabilities and hysteresis in Heuslers by density functional theory calculations,” Phys. Status Solidi B 255 (2), 1700296 (2018). CrossRef
23.
go back to reference V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid’ko, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev, “Adiabatic temperature change at first-order magnetic phase transitions: Ni 2.19Mn 0.81Ga as a case study,” Phys. Rev. B 78 (6), 060403 (2008). CrossRef V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid’ko, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev, “Adiabatic temperature change at first-order magnetic phase transitions: Ni 2.19Mn 0.81Ga as a case study,” Phys. Rev. B 78 (6), 060403 (2008). CrossRef
24.
go back to reference A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni 2.18Mn 0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117 (16), 163903 (2015). CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni 2.18Mn 0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117 (16), 163903 (2015). CrossRef
25.
go back to reference T. Gottschall, K. P. Skokov, R. Burriel, and O. Gutfleisch, “On the S( T) diagram of magnetocaloric materials with first-order transition: kinetic and cyclic effects of Heusler alloys,” Acta Mater. 107, 1–8 (2016). CrossRef T. Gottschall, K. P. Skokov, R. Burriel, and O. Gutfleisch, “On the S( T) diagram of magnetocaloric materials with first-order transition: kinetic and cyclic effects of Heusler alloys,” Acta Mater. 107, 1–8 (2016). CrossRef
26.
go back to reference A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe 48Rh 52 and Sm 0.6Sr 0.4MnO 3,” Appl. Phys. Lett. 109 (20), 202407 (2016). CrossRef A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe 48Rh 52 and Sm 0.6Sr 0.4MnO 3,” Appl. Phys. Lett. 109 (20), 202407 (2016). CrossRef
27.
go back to reference A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. V. Mashirov, E. T. Dil’mieva, V. V. Koledov, and V. G. Shavrov, “Degradation of the magnetocaloric effect in Ni 49.3Mn 40.4In 10.3 in a cyclic magnetic field,” Solid State Phys. 62, 837–840 (2020). CrossRef A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. V. Mashirov, E. T. Dil’mieva, V. V. Koledov, and V. G. Shavrov, “Degradation of the magnetocaloric effect in Ni 49.3Mn 40.4In 10.3 in a cyclic magnetic field,” Solid State Phys. 62, 837–840 (2020). CrossRef
28.
go back to reference N. A. De Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489 (4–5), 89–159 (2010). CrossRef N. A. De Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489 (4–5), 89–159 (2010). CrossRef
29.
go back to reference N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric and barocaloric effects: theoretical description and trends,” Int. J. Refrig. 37, 237–248 (2014). CrossRef N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric and barocaloric effects: theoretical description and trends,” Int. J. Refrig. 37, 237–248 (2014). CrossRef
30.
go back to reference A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003). CrossRef A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003). CrossRef
31.
go back to reference V. Basso, Basics of the magnetocaloric effect, 2017. arXiv:1702.08347. V. Basso, Basics of the magnetocaloric effect, 2017. arXiv:1702.08347.
32.
go back to reference T. Kihara, X. Xu, W. Ito, R. Kainuma, and M. Tokunaga, “Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn,” Phys. Rev. B 90 (21), 214409 (2014). CrossRef T. Kihara, X. Xu, W. Ito, R. Kainuma, and M. Tokunaga, “Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn,” Phys. Rev. B 90 (21), 214409 (2014). CrossRef
33.
go back to reference V.V. Khovailo, K. Oikawa, T. Abe, and T. Takagi, “Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni 2 + xMn 1 – xGa,” J. Appl. Phys. 93 (10), 8483–8485 (2003). CrossRef V.V. Khovailo, K. Oikawa, T. Abe, and T. Takagi, “Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni 2 + xMn 1 – xGa,” J. Appl. Phys. 93 (10), 8483–8485 (2003). CrossRef
34.
go back to reference V. Khovaylo, “Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys,” J. Alloys Compd. 577, S362–S366 (2013). CrossRef V. Khovaylo, “Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys,” J. Alloys Compd. 577, S362–S366 (2013). CrossRef
35.
go back to reference M. Wolloch, M. E. Gruner, W. Keune, P. Mohn, J. Redinger, F. Hofer, D. Suess, R. Podloucky, J. Landers, S. Salamon, F. Scheibel, D. Spoddig, R. Witte, B. Roldan Cuenya, O. Gutfleisch, et al., “Impact of lattice dynamics on the phase stability of metamagnetic FeRh: bulk and thin films,” Phys. Rev. B 94 (17), 174435 (2016). CrossRef M. Wolloch, M. E. Gruner, W. Keune, P. Mohn, J. Redinger, F. Hofer, D. Suess, R. Podloucky, J. Landers, S. Salamon, F. Scheibel, D. Spoddig, R. Witte, B. Roldan Cuenya, O. Gutfleisch, et al., “Impact of lattice dynamics on the phase stability of metamagnetic FeRh: bulk and thin films,” Phys. Rev. B 94 (17), 174435 (2016). CrossRef
36.
go back to reference R. M. Vieira, O. Eriksson, A. Bergman, and H. C. Herper, “High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case,” J. Alloys Compd. 857, 157811 (2021). CrossRef R. M. Vieira, O. Eriksson, A. Bergman, and H. C. Herper, “High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case,” J. Alloys Compd. 857, 157811 (2021). CrossRef
37.
go back to reference P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd 5(Si xGe 1 – x) 4,” J. Magn. Magn. Mater. 277 (1–2), 78–83 (2004). CrossRef P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd 5(Si xGe 1 – x) 4,” J. Magn. Magn. Mater. 277 (1–2), 78–83 (2004). CrossRef
38.
go back to reference A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, “Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys,” J. Magn. Magn. Mater. 67 (1), 65–74 (1987). CrossRef A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, “Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys,” J. Magn. Magn. Mater. 67 (1), 65–74 (1987). CrossRef
39.
go back to reference P. Entel, M. Siewert, M. E. Gruner, H. C. Herper, D. Comtesse, R. Arróyave, N. Singh, A. Talapatra, V. V. Sokolovskiy, V. D. Buchelnikov, F. Albertini, L. Righi, and V. A. Chernenko, “Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles,” Eur. Phys. J. B 86 (2), 65–11 (2013). CrossRef P. Entel, M. Siewert, M. E. Gruner, H. C. Herper, D. Comtesse, R. Arróyave, N. Singh, A. Talapatra, V. V. Sokolovskiy, V. D. Buchelnikov, F. Albertini, L. Righi, and V. A. Chernenko, “Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles,” Eur. Phys. J. B 86 (2), 65–11 (2013). CrossRef
40.
go back to reference P. Entel, M. Siewert, M. E. Gruner, A. Chakrabarti, S. R. Barman, V. V. Sokolovskiy, and V. D. Buchelnikov, “Optimization of smart Heusler alloys from first principles,” J. Alloys Compd. 577, S107–S112 (2013). CrossRef P. Entel, M. Siewert, M. E. Gruner, A. Chakrabarti, S. R. Barman, V. V. Sokolovskiy, and V. D. Buchelnikov, “Optimization of smart Heusler alloys from first principles,” J. Alloys Compd. 577, S107–S112 (2013). CrossRef
41.
go back to reference P. Entel, M. E. Gruner, D. Comtesse, V. V. Sokolovskiy, and V. D. Buchelnikov, “Interacting magnetic cluster-spin glasses and strain glasses in Ni–Mn based Heusler structured intermetallics,” Phys. Status Solidi B 251 (10), 2135–2148 (2014). CrossRef P. Entel, M. E. Gruner, D. Comtesse, V. V. Sokolovskiy, and V. D. Buchelnikov, “Interacting magnetic cluster-spin glasses and strain glasses in Ni–Mn based Heusler structured intermetallics,” Phys. Status Solidi B 251 (10), 2135–2148 (2014). CrossRef
42.
go back to reference A. O. Pecharsky, K. A. Gschneidner, Jr., V. K. Pecharsky, and C. E. Schindler, “The room temperature metastable/stable phase relationships in the pseudo-binary Gd 5Si 4–Gd 5Ge 4 system,” J. Alloys Compd. 338 (1–2), 126–135 (2002). CrossRef A. O. Pecharsky, K. A. Gschneidner, Jr., V. K. Pecharsky, and C. E. Schindler, “The room temperature metastable/stable phase relationships in the pseudo-binary Gd 5Si 4–Gd 5Ge 4 system,” J. Alloys Compd. 338 (1–2), 126–135 (2002). CrossRef
43.
go back to reference L. Morellon, P. A. Algarabel, M. R. Ibarra, J. Blasco, B. Garcia-Landa, Z. Arnold, and F. Albertini, “Magnetic-field-induced structural phase transition in Gd 5(Si 1.8Ge 2.2),” Phys. Rev. B 58 (22), R14721 (1998). CrossRef L. Morellon, P. A. Algarabel, M. R. Ibarra, J. Blasco, B. Garcia-Landa, Z. Arnold, and F. Albertini, “Magnetic-field-induced structural phase transition in Gd 5(Si 1.8Ge 2.2),” Phys. Rev. B 58 (22), R14721 (1998). CrossRef
44.
go back to reference L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra, and J. Kamarad, “Pressure enhancement of the giant magnetocaloric effect in Tb 5Si 2Ge 2,” Phys. Rev. Lett. 93 (13), 137201 (2004). CrossRef L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra, and J. Kamarad, “Pressure enhancement of the giant magnetocaloric effect in Tb 5Si 2Ge 2,” Phys. Rev. Lett. 93 (13), 137201 (2004). CrossRef
45.
go back to reference A. O. Pecharsky, K. A. Gschneidner, Jr., and V. K. Pecharsky, “The giant magnetocaloric effect of optimally prepared Gd 5Si 2Ge 2,” J. Appl. Phys. 93 (8), 4722–4728 (2003). CrossRef A. O. Pecharsky, K. A. Gschneidner, Jr., and V. K. Pecharsky, “The giant magnetocaloric effect of optimally prepared Gd 5Si 2Ge 2,” J. Appl. Phys. 93 (8), 4722–4728 (2003). CrossRef
46.
go back to reference G. S. Smith, A. G. Tharp, and W. Johnson, “Rare earth–germanium and silicon compounds at 5 : 4 and 5 : 3 compositions,” Acta Crystallogr. 22 (6), 940–943 (1967). CrossRef G. S. Smith, A. G. Tharp, and W. Johnson, “Rare earth–germanium and silicon compounds at 5 : 4 and 5 : 3 compositions,” Acta Crystallogr. 22 (6), 940–943 (1967). CrossRef
47.
go back to reference V. K. Pecharsky and K. A. Gschneidner Jr., “Phase relationships and crystallography in the pseudobinary system Gd 5Si 4–Gd 5Ge 4,” J. Alloys Compd. 260 (1–2), 98–106 (1997). CrossRef V. K. Pecharsky and K. A. Gschneidner Jr., “Phase relationships and crystallography in the pseudobinary system Gd 5Si 4–Gd 5Ge 4,” J. Alloys Compd. 260 (1–2), 98–106 (1997). CrossRef
48.
go back to reference T. A. Lograsso, D. L. Schlagel, and A. O. Pecharsky, “Synthesis and characterization of single crystalline Gd 5(Si xGe 1 – x) 4 by the Bridgman method,” J. Alloys Compd. 393 (1–2), 141–146 (2005). CrossRef T. A. Lograsso, D. L. Schlagel, and A. O. Pecharsky, “Synthesis and characterization of single crystalline Gd 5(Si xGe 1 – x) 4 by the Bridgman method,” J. Alloys Compd. 393 (1–2), 141–146 (2005). CrossRef
49.
go back to reference M. Bacmann, J.-L. Soubeyroux, R. Barrett, D. Fruchart, R. Zach, S. Niziol, and R. Fruchart, “Magnetoelastic transition and antiferro-ferromagnetic ordering in the system MnFeP 1 – yAs y,” J. Magn. Magn. Mater. 134 (1), 59–67 (1994). CrossRef M. Bacmann, J.-L. Soubeyroux, R. Barrett, D. Fruchart, R. Zach, S. Niziol, and R. Fruchart, “Magnetoelastic transition and antiferro-ferromagnetic ordering in the system MnFeP 1 – yAs y,” J. Magn. Magn. Mater. 134 (1), 59–67 (1994). CrossRef
50.
go back to reference M. Yuzuri and M. Yamada, “On the magnetic properties of the compound Mn 2As,” J. Phys. Soc. Japan. 15 (10), 1845–1850 (1960). CrossRef M. Yuzuri and M. Yamada, “On the magnetic properties of the compound Mn 2As,” J. Phys. Soc. Japan. 15 (10), 1845–1850 (1960). CrossRef
51.
go back to reference H. Ido, “Magnetic and crystallographic studies of compounds Mn 1 – xCr xAs (0.3 ≥ x > 0),” J. Phys. Soc. Jpn. 27 (2), 318–321 (1969). CrossRef H. Ido, “Magnetic and crystallographic studies of compounds Mn 1 – xCr xAs (0.3 ≥ x > 0),” J. Phys. Soc. Jpn. 27 (2), 318–321 (1969). CrossRef
52.
go back to reference F. Wang, G.-J. Wang, F.-X. Hu, A. Kurbakov, B.‑G. Shen, and Z.-H. Cheng, “Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe 11.4Si 1.6: a neutron diffraction study,” J. Condens. Matter Phys. 15 (30), 5269–5278 (2003). CrossRef F. Wang, G.-J. Wang, F.-X. Hu, A. Kurbakov, B.‑G. Shen, and Z.-H. Cheng, “Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe 11.4Si 1.6: a neutron diffraction study,” J. Condens. Matter Phys. 15 (30), 5269–5278 (2003). CrossRef
53.
go back to reference B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo, and K. Itagaki, “Low temperature crystal structure of Ni–Mn–Ga alloys,” J. Alloys Compd. 290 (1–2), 137–143 (1999). CrossRef B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo, and K. Itagaki, “Low temperature crystal structure of Ni–Mn–Ga alloys,” J. Alloys Compd. 290 (1–2), 137–143 (1999). CrossRef
54.
go back to reference P. Jernberg, A. A. Yousif, L. Häggström, and Y. Andersson, “A Mössbauer study of Fe 2P 1 – xSi x ( x ≤ 0.35),” J. Solid State Chem. 53 (3), 313–322 (1984). CrossRef P. Jernberg, A. A. Yousif, L. Häggström, and Y. Andersson, “A Mössbauer study of Fe 2P 1 – xSi x ( x ≤ 0.35),” J. Solid State Chem. 53 (3), 313–322 (1984). CrossRef
55.
go back to reference E. Brück, M. Ilyn, A. M. Tishin, and O. Tegus, “Magnetocaloric effects in MnFeP 1 – xAs x-based compounds,” J. Magn. Magn. Mater. 290, 8–13 (2005). CrossRef E. Brück, M. Ilyn, A. M. Tishin, and O. Tegus, “Magnetocaloric effects in MnFeP 1 – xAs x-based compounds,” J. Magn. Magn. Mater. 290, 8–13 (2005). CrossRef
56.
go back to reference H. Wada and Y. Tanabe, “Giant magnetocaloric effect of MnAs 1 – xSb x,” Appl. Phys. Lett. 79 (20), 3302–3304 (2001). CrossRef H. Wada and Y. Tanabe, “Giant magnetocaloric effect of MnAs 1 – xSb x,” Appl. Phys. Lett. 79 (20), 3302–3304 (2001). CrossRef
57.
go back to reference H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige, “Giant magnetocaloric effect of MnAs 1 – xSb x in the vicinity of first-order magnetic transition,” Phys. B (Amsterdam) 328 (1–2), 114–116 (2003). CrossRef H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige, “Giant magnetocaloric effect of MnAs 1 – xSb x in the vicinity of first-order magnetic transition,” Phys. B (Amsterdam) 328 (1–2), 114–116 (2003). CrossRef
58.
go back to reference V. Raghavan, “Fe–La–Si (iron-lanthanum-silicon),” J. Phase Equilib. Diffus. 22 (2), 158–159 (2001). CrossRef V. Raghavan, “Fe–La–Si (iron-lanthanum-silicon),” J. Phase Equilib. Diffus. 22 (2), 158–159 (2001). CrossRef
59.
go back to reference A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto, “Itinerant-electron metamagnetic transition and large magnetovolume effects in La(Fe xSi 1 – x) 13 compounds,” Phys. Rev. B 65 (1), 014410 (2001). CrossRef A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto, “Itinerant-electron metamagnetic transition and large magnetovolume effects in La(Fe xSi 1 – x) 13 compounds,” Phys. Rev. B 65 (1), 014410 (2001). CrossRef
60.
go back to reference A. Fujita and K. Fukamichi, “Giant volume magnetostriction due to the itinerant electron metamagnetic transition in La(Fe–Si) 13 compounds,” IEEE Trans. Magn. 35 (5), 3796–3798 (1999). CrossRef A. Fujita and K. Fukamichi, “Giant volume magnetostriction due to the itinerant electron metamagnetic transition in La(Fe–Si) 13 compounds,” IEEE Trans. Magn. 35 (5), 3796–3798 (1999). CrossRef
61.
go back to reference S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(Fe xSi 1 – x) 13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 81 (7), 1276–1278 (2002). CrossRef S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(Fe xSi 1 – x) 13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 81 (7), 1276–1278 (2002). CrossRef
62.
go back to reference A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, “Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fe xSi 1 – x) 13 compounds and their hydrides,” Phys. Rev. B 67 (10), 104416 (2003). CrossRef A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, “Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fe xSi 1 – x) 13 compounds and their hydrides,” Phys. Rev. B 67 (10), 104416 (2003). CrossRef
63.
go back to reference P. A. Algarabel, M. R. Ibarra, C. Marquina, A. Del Moral, J. Galibert, M. Iqbal, and S. Askenazy, “Giant room-temperature magnetoresistance in the FeRh alloy,” Appl. Phys. Lett. 66 (22), 3061–3063 (1995). CrossRef P. A. Algarabel, M. R. Ibarra, C. Marquina, A. Del Moral, J. Galibert, M. Iqbal, and S. Askenazy, “Giant room-temperature magnetoresistance in the FeRh alloy,” Appl. Phys. Lett. 66 (22), 3061–3063 (1995). CrossRef
64.
go back to reference M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, “Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators,” Cryogenics 32 (10), 867–872 (1992). CrossRef M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, “Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators,” Cryogenics 32 (10), 867–872 (1992). CrossRef
65.
go back to reference A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gutfleisch, and T. G. Woodcock, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). CrossRef A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gutfleisch, and T. G. Woodcock, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016). CrossRef
66.
go back to reference A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46 (6), 559–588 (2003). CrossRef A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46 (6), 559–588 (2003). CrossRef
67.
go back to reference V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovaylo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49 (8), 871–877 (2006). CrossRef V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovaylo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49 (8), 871–877 (2006). CrossRef
68.
go back to reference P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865–889 (2006). CrossRef P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865–889 (2006). CrossRef
69.
go back to reference P. Entel, V. D. Buchelnikov, M. E. Gruner, A. Hucht, V. V. Khovailo, S. K. Nayak, and A. T. Zayak, “Shape memory alloys: a summary of recent achievements,” Mater. Sci. Forum. 583, 21–41 (2008). CrossRef P. Entel, V. D. Buchelnikov, M. E. Gruner, A. Hucht, V. V. Khovailo, S. K. Nayak, and A. T. Zayak, “Shape memory alloys: a summary of recent achievements,” Mater. Sci. Forum. 583, 21–41 (2008). CrossRef
70.
go back to reference P. Entel, M. E. Gruner, A. Dannenberg, M. Siewert, S. K. Nayak, H. C. Herper, and V. D. Buchelnikov, “Fundamental aspects of magnetic shape memory alloys: insights from ab initio and Monte Carlo studies,” Mater. Sci. Forum. 635, 3–12 (2010). CrossRef P. Entel, M. E. Gruner, A. Dannenberg, M. Siewert, S. K. Nayak, H. C. Herper, and V. D. Buchelnikov, “Fundamental aspects of magnetic shape memory alloys: insights from ab initio and Monte Carlo studies,” Mater. Sci. Forum. 635, 3–12 (2010). CrossRef
71.
go back to reference T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1–50 (2011). CrossRef T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1–50 (2011). CrossRef
72.
go back to reference P. Entel, A. Dannenberg, M. Siewert, H. C. Herper, M. E. Gruner, V. D. Buchelnikov, and V. A. Chernenko, Composition-dependent basics of smart Heusler materials from first-principles calculations,” Mater. Sci. Forum. 684, 1–29 (2011). CrossRef P. Entel, A. Dannenberg, M. Siewert, H. C. Herper, M. E. Gruner, V. D. Buchelnikov, and V. A. Chernenko, Composition-dependent basics of smart Heusler materials from first-principles calculations,” Mater. Sci. Forum. 684, 1–29 (2011). CrossRef
73.
go back to reference P. Entel, M. E. Gruner, A. Hucht, A. Dannenberg, M. Siewert, H. C. Herper, T. Kakeshita, T. Fukuda, V. V. Sokolovskiy, and V. D. Buchelnikov, “Phase diagrams of conventional and inverse functional magnetic Heusler alloys: new theoretical and experimental investigations,” in Disorder and Strain-Induced Complexity in Functional Materials (Springer, New York, 2012), pp. 19–47. P. Entel, M. E. Gruner, A. Hucht, A. Dannenberg, M. Siewert, H. C. Herper, T. Kakeshita, T. Fukuda, V. V. Sokolovskiy, and V. D. Buchelnikov, “Phase diagrams of conventional and inverse functional magnetic Heusler alloys: new theoretical and experimental investigations,” in Disorder and Strain-Induced Complexity in Functional Materials (Springer, New York, 2012), pp. 19–47.
74.
go back to reference C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, “Basics and prospective of magnetic Heusler compounds,” APL Mater. 3 (4), 041518 (2015). CrossRef C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, “Basics and prospective of magnetic Heusler compounds,” APL Mater. 3 (4), 041518 (2015). CrossRef
75.
go back to reference P. Entel, M. E. Gruner, M. Acet, A. Çakır, R. Arróyave, T. Duong, S. Sahoo, S. Fähler, and V. V. Sokolovskiy, “Properties and decomposition of Heusler alloys,” Energy Technol. 6 (8), 1478–1490 (2018). CrossRef P. Entel, M. E. Gruner, M. Acet, A. Çakır, R. Arróyave, T. Duong, S. Sahoo, S. Fähler, and V. V. Sokolovskiy, “Properties and decomposition of Heusler alloys,” Energy Technol. 6 (8), 1478–1490 (2018). CrossRef
76.
go back to reference V. A. Chernenko, V. A. L’vov, E. Cesari, and J. M. Barandiaran, “Fundamentals of magnetocaloric effect in magnetic shape memory alloys,” in Handbook of Magnetic Materials (Elsevier, Amsterdam, 2019), Vol. 28, pp. 1–45. V. A. Chernenko, V. A. L’vov, E. Cesari, and J. M. Barandiaran, “Fundamentals of magnetocaloric effect in magnetic shape memory alloys,” in Handbook of Magnetic Materials (Elsevier, Amsterdam, 2019), Vol. 28, pp. 1–45.
77.
go back to reference V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni 2 + xMn 1 – xGa with a high Ni excess,” Phys. Rev. B 72 (22), 224408 (2005). CrossRef V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni 2 + xMn 1 – xGa with a high Ni excess,” Phys. Rev. B 72 (22), 224408 (2005). CrossRef
78.
go back to reference P. J. Brown, A. P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K. U. Neumann, K. Oikawa, B. Ouladdiaf, and K. R. A. Ziebeck, “The magnetic and structural properties of the magnetic shape memory compound Ni 2Mn 1.44Sn 0.56,” J. Condens. Matter Phys. 18 (7), 2249 (2006). CrossRef P. J. Brown, A. P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K. U. Neumann, K. Oikawa, B. Ouladdiaf, and K. R. A. Ziebeck, “The magnetic and structural properties of the magnetic shape memory compound Ni 2Mn 1.44Sn 0.56,” J. Condens. Matter Phys. 18 (7), 2249 (2006). CrossRef
79.
go back to reference T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys,” Phys. Rev. B 72 (1), 014412 (2005). CrossRef T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys,” Phys. Rev. B 72 (1), 014412 (2005). CrossRef
80.
go back to reference T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73 (17), 174413 (2006). CrossRef T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73 (17), 174413 (2006). CrossRef
81.
go back to reference M. Khan, N. Ali, and S. Stadler, “Inverse magnetocaloric effect in ferromagnetic Ni 50Mn 37 + xSb 13 – x Heusler alloys,” J. Appl. Phys. 101 (5), 053919 (2007). CrossRef M. Khan, N. Ali, and S. Stadler, “Inverse magnetocaloric effect in ferromagnetic Ni 50Mn 37 + xSb 13 – x Heusler alloys,” J. Appl. Phys. 101 (5), 053919 (2007). CrossRef
82.
go back to reference S. Aksoy, M. Acet, P. P. Deen, L. Mañosa, and A. Planes, “Magnetic correlations in martensitic NiMn-based Heusler shape-memory alloys: neutron polarization analysis,” Phys. Rev. B 79, 212401 (2009). CrossRef S. Aksoy, M. Acet, P. P. Deen, L. Mañosa, and A. Planes, “Magnetic correlations in martensitic NiMn-based Heusler shape-memory alloys: neutron polarization analysis,” Phys. Rev. B 79, 212401 (2009). CrossRef
83.
go back to reference R. Y. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, K. Oikawa, and K. Ishida, “Mössbauer study on martensite phase in \({\text{N}}{{{\text{i}}}_{{{\text{50}}}}}{\text{Mn}}_{{{\text{36}}{\text{.5}}}}^{{}}{\text{Fe}}_{{0.5}}^{{57}}{\text{S}}{{{\text{n}}}_{{{\text{13}}}}}\) metamagnetic shape memory alloy,” Appl. Phys. Lett. 93 (4), 042509 (2008). CrossRef R. Y. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, K. Oikawa, and K. Ishida, “Mössbauer study on martensite phase in \({\text{N}}{{{\text{i}}}_{{{\text{50}}}}}{\text{Mn}}_{{{\text{36}}{\text{.5}}}}^{{}}{\text{Fe}}_{{0.5}}^{{57}}{\text{S}}{{{\text{n}}}_{{{\text{13}}}}}\) metamagnetic shape memory alloy,” Appl. Phys. Lett. 93 (4), 042509 (2008). CrossRef
84.
go back to reference V. V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V. V. Koledov, V. G. Shavrov, G. Wang, E. Palacios, J. Bartolomé, and R. Burriel, “Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys,” Phys. Rev. B 81 (21), 214406 (2010). CrossRef V. V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V. V. Koledov, V. G. Shavrov, G. Wang, E. Palacios, J. Bartolomé, and R. Burriel, “Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys,” Phys. Rev. B 81 (21), 214406 (2010). CrossRef
85.
go back to reference J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nat. Mater. 11 (7), 620–626 (2012). CrossRef J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nat. Mater. 11 (7), 620–626 (2012). CrossRef
86.
go back to reference T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015). CrossRef T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015). CrossRef
87.
go back to reference K. P. Skokov, A. Yu. Karpenkov, D. Yu. Karpenkov, and O. Gutfleisch, “The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi) 13 alloys,” J. Appl. Phys. 113 (17), 17A945 (2013). K. P. Skokov, A. Yu. Karpenkov, D. Yu. Karpenkov, and O. Gutfleisch, “The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi) 13 alloys,” J. Appl. Phys. 113 (17), 17A945 (2013).
88.
go back to reference A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel’nikov, “Magnetocaloric effect in Ni 2 + xMn 1 – xGa Heusler alloys,” Phys. Lett. A 326 (1–2), 146–151 (2004). CrossRef A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel’nikov, “Magnetocaloric effect in Ni 2 + xMn 1 – xGa Heusler alloys,” Phys. Lett. A 326 (1–2), 146–151 (2004). CrossRef
89.
go back to reference V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Yu. Karpenkov, E. T. Dilmieva, V. V. Koledov, Yu. S. Koshkidko, V. G. Shavrov, V. D. Buchelnikov, V. V. Sokolovskiy, I. Bobrovskij, A. Dyakonov, R. Chatterjee, and A. N. Vasiliev, “Magnetocaloric properties of Ni 2 + xMn 1 – xGa with coupled magnetostructural phase transition,” J. Appl. Phys. 127 (17), 173903 (2020). CrossRef V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Yu. Karpenkov, E. T. Dilmieva, V. V. Koledov, Yu. S. Koshkidko, V. G. Shavrov, V. D. Buchelnikov, V. V. Sokolovskiy, I. Bobrovskij, A. Dyakonov, R. Chatterjee, and A. N. Vasiliev, “Magnetocaloric properties of Ni 2 + xMn 1 – xGa with coupled magnetostructural phase transition,” J. Appl. Phys. 127 (17), 173903 (2020). CrossRef
90.
go back to reference S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, and F. Albertini, “Co and In doped Ni–Mn–Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study,” Entropy 16 (4), 2204–2222 (2014). CrossRef S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, and F. Albertini, “Co and In doped Ni–Mn–Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study,” Entropy 16 (4), 2204–2222 (2014). CrossRef
91.
go back to reference A. Taubel, T. Gottschall, M. Fries, S. Riegg, C. Soon, K. P. Skokov, and O. Gutfleisch, “A comparative study on the magnetocaloric properties of Ni–Mn–X(–Co) Heusler alloys,” Phys. Status Solidi B. 255 (2), 1700331 (2018). CrossRef A. Taubel, T. Gottschall, M. Fries, S. Riegg, C. Soon, K. P. Skokov, and O. Gutfleisch, “A comparative study on the magnetocaloric properties of Ni–Mn–X(–Co) Heusler alloys,” Phys. Status Solidi B. 255 (2), 1700331 (2018). CrossRef
92.
go back to reference R. Barman and D. Kaur, “Improved magnetocaloric effect in magnetron sputtered Ni–Mn–Sb–Al ferromagnetic shape memory alloy thin films,” Vacuum 120, 22–26 (2015). CrossRef R. Barman and D. Kaur, “Improved magnetocaloric effect in magnetron sputtered Ni–Mn–Sb–Al ferromagnetic shape memory alloy thin films,” Vacuum 120, 22–26 (2015). CrossRef
93.
go back to reference C. Salazar-Mejía, V. Kumar, C. Felser, Y. Skourski, J. Wosnitza, and A. K. Nayak, “Measurement-protocol dependence of the magnetocaloric effect in Ni–Co–Mn–Sb Heusler alloys,” Phys. Rev. Appl. 11 (5), 054006 (2019). CrossRef C. Salazar-Mejía, V. Kumar, C. Felser, Y. Skourski, J. Wosnitza, and A. K. Nayak, “Measurement-protocol dependence of the magnetocaloric effect in Ni–Co–Mn–Sb Heusler alloys,” Phys. Rev. Appl. 11 (5), 054006 (2019). CrossRef
94.
go back to reference P. J. von Ranke, A. De Campos, L. Caron, A. A. Coelho, S. Gama, and N. A. De Oliveira, “Calculation of the giant magnetocaloric effect in the MnFeP 0.45As 0.55 compound,” Phys. Rev. B 70 (9), 094410 (2004). CrossRef P. J. von Ranke, A. De Campos, L. Caron, A. A. Coelho, S. Gama, and N. A. De Oliveira, “Calculation of the giant magnetocaloric effect in the MnFeP 0.45As 0.55 compound,” Phys. Rev. B 70 (9), 094410 (2004). CrossRef
95.
go back to reference P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Theoretical investigations on giant magnetocaloric effect in MnAs 1–xSb x,” Phys. Lett. A. 320 (4), 302–306 (2004). CrossRef P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Theoretical investigations on giant magnetocaloric effect in MnAs 1–xSb x,” Phys. Lett. A. 320 (4), 302–306 (2004). CrossRef
96.
go back to reference C. P. Bean and D. S. Rodbell, “Magnetic disorder as a first-order phase transformation,” Phys. Rev. 126 (1), 104–115 (1962). CrossRef C. P. Bean and D. S. Rodbell, “Magnetic disorder as a first-order phase transformation,” Phys. Rev. 126 (1), 104–115 (1962). CrossRef
97.
go back to reference E. P. Wohlfarth and P. Rhodes, “Collective electron metamagnetism,” Philos. Mag. 7 (83), 1817–1824 (1962). CrossRef E. P. Wohlfarth and P. Rhodes, “Collective electron metamagnetism,” Philos. Mag. 7 (83), 1817–1824 (1962). CrossRef
98.
go back to reference R. Z. Levitin and A. S. Markosyan, “Itinerant metamagnetism,” Sov. Phys. Usp. 31 (8), 730–749 (1988). CrossRef R. Z. Levitin and A. S. Markosyan, “Itinerant metamagnetism,” Sov. Phys. Usp. 31 (8), 730–749 (1988). CrossRef
99.
go back to reference H. Yamada, K. Fukamichi, and T. Goto, “Itinerant-electron metamagnetism and strong pressure dependence of the Curie temperature,” Phys. Rev. B 65 (2), 024413 (2001). CrossRef H. Yamada, K. Fukamichi, and T. Goto, “Itinerant-electron metamagnetism and strong pressure dependence of the Curie temperature,” Phys. Rev. B 65 (2), 024413 (2001). CrossRef
100.
go back to reference H. Yamada and T. Goto, “Itinerant-electron metamagnetism and giant magnetocaloric effect,” Phys. Rev. B 68 (18), 184417 (2003). CrossRef H. Yamada and T. Goto, “Itinerant-electron metamagnetism and giant magnetocaloric effect,” Phys. Rev. B 68 (18), 184417 (2003). CrossRef
101.
go back to reference H. Yamada and T. Goto, “Giant magnetocaloric effect in itinerant-electron metamagnets,” Phys. B (Amsterdam) 346, 104–108 (2004). CrossRef H. Yamada and T. Goto, “Giant magnetocaloric effect in itinerant-electron metamagnets,” Phys. B (Amsterdam) 346, 104–108 (2004). CrossRef
102.
go back to reference S. V. Taskaev, V. D. Buchelnikov, and V. V. Sokolovsky, “Theoretical description of magnetocaloric effect in La–Fe–Si alloys,” in Proceedings of the 2nd International Conf. on Magnetic Refrigeration at Room Temperature (Institut International du Froid, Paris, 2007), pp. 89–97. S. V. Taskaev, V. D. Buchelnikov, and V. V. Sokolovsky, “Theoretical description of magnetocaloric effect in La–Fe–Si alloys,” in Proceedings of the 2nd International Conf. on Magnetic Refrigeration at Room Temperature (Institut International du Froid, Paris, 2007), pp. 89–97.
103.
go back to reference E. Z. Valiev and V. A. Kazantsev, “Magnetocaloric effect in La(Fe xSi 1–x) 13 ferromagnets,” J. Exp. Theor. Phys. 113 (6), 1000–1005 (2011). CrossRef E. Z. Valiev and V. A. Kazantsev, “Magnetocaloric effect in La(Fe xSi 1–x) 13 ferromagnets,” J. Exp. Theor. Phys. 113 (6), 1000–1005 (2011). CrossRef
104.
go back to reference P. J. von Ranke, N. A. De Oliveira, C. Mello, A. Carvalho, G. Magnus, and S. Gama, “Analytical model to understand the colossal magnetocaloric effect,” Phys. Rev. B 71 (5), 054410 (2005). CrossRef P. J. von Ranke, N. A. De Oliveira, C. Mello, A. Carvalho, G. Magnus, and S. Gama, “Analytical model to understand the colossal magnetocaloric effect,” Phys. Rev. B 71 (5), 054410 (2005). CrossRef
105.
go back to reference E. Valiev, R. Gimaev, V. Zverev, K. Kamilov, A. Pyatakov, B. Kovalev, and A. Tishin, “Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties,” Intermetallics 108, 81–86 (2019). CrossRef E. Valiev, R. Gimaev, V. Zverev, K. Kamilov, A. Pyatakov, B. Kovalev, and A. Tishin, “Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties,” Intermetallics 108, 81–86 (2019). CrossRef
106.
go back to reference N. P. Grazhdankina, “Magnetic first order phase transitions,” Sov. Phys.-Usp. 11 (5), 727–745 (1969). CrossRef N. P. Grazhdankina, “Magnetic first order phase transitions,” Sov. Phys.-Usp. 11 (5), 727–745 (1969). CrossRef
107.
go back to reference L. H. Lewis, C. H. Marrows, and S. Langridge, “Coupled magnetic, structural, and electronic phase transitions in FeRh,” J. Phys. D: Appl. Phys. 49 (32), 323002–18 (2016). CrossRef L. H. Lewis, C. H. Marrows, and S. Langridge, “Coupled magnetic, structural, and electronic phase transitions in FeRh,” J. Phys. D: Appl. Phys. 49 (32), 323002–18 (2016). CrossRef
108.
go back to reference A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, “Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy,” Sov. J. Exp. Theor. Phys. 19, 1348–1353 (1964). A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, “Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy,” Sov. J. Exp. Theor. Phys. 19, 1348–1353 (1964).
109.
go back to reference S. A. Nikitin, A. M. Tishin, S. F. Savchenkova, Yu. I. Spichkin, O. D. Chistykov, S. V. Red’ko, and Yu. A. Nesterov, “Magnetic part of specific heat in high-purity Dy single crystal,” J. Magn. Magn. Mater. 96 (1–3), 26–28 (1991). CrossRef S. A. Nikitin, A. M. Tishin, S. F. Savchenkova, Yu. I. Spichkin, O. D. Chistykov, S. V. Red’ko, and Yu. A. Nesterov, “Magnetic part of specific heat in high-purity Dy single crystal,” J. Magn. Magn. Mater. 96 (1–3), 26–28 (1991). CrossRef
110.
go back to reference V. D. Buchelnikov and S. I. Bosko, “The kinetics of phase transformations in ferromagnetic shape memory alloys Ni–Mn–Ga,” J. Magn. Magn. Mater. 258, 497–499 (2003). CrossRef V. D. Buchelnikov and S. I. Bosko, “The kinetics of phase transformations in ferromagnetic shape memory alloys Ni–Mn–Ga,” J. Magn. Magn. Mater. 258, 497–499 (2003). CrossRef
111.
go back to reference V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni 2.19Mn 0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. 23 (1–2), 65–69 (2006). CrossRef V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni 2.19Mn 0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. 23 (1–2), 65–69 (2006). CrossRef
112.
go back to reference O. N. Miroshkina, V. V. Sokolovskiy, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Theoretical approach to investigation of the magnetic and magnetocaloric properties of Heusler Ni–Mn–Ga alloys,” Solid State Phys. 62, 785–792 (2020). CrossRef O. N. Miroshkina, V. V. Sokolovskiy, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Theoretical approach to investigation of the magnetic and magnetocaloric properties of Heusler Ni–Mn–Ga alloys,” Solid State Phys. 62, 785–792 (2020). CrossRef
113.
go back to reference O. N. Miroshkina, V. V. Sokolovskiy, D. R. Baigutlin, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Statistical model for the martensitic transformation simulation in Heusler alloys,” Phys. B (Amsterdam) 578, 411874–5 (2020). CrossRef O. N. Miroshkina, V. V. Sokolovskiy, D. R. Baigutlin, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Statistical model for the martensitic transformation simulation in Heusler alloys,” Phys. B (Amsterdam) 578, 411874–5 (2020). CrossRef
114.
go back to reference V. A. L’vov, A. Kosogor, J. M. Barandiaran, and V. A. Chernenko, “Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior,” J. Appl. Phys. 119 (1), 013902 (2016). CrossRef V. A. L’vov, A. Kosogor, J. M. Barandiaran, and V. A. Chernenko, “Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior,” J. Appl. Phys. 119 (1), 013902 (2016). CrossRef
115.
go back to reference A. Kosogor, J. M. Barandiaran, V. A. L’vov, J. R. Fernandez, and V. A. Chernenko, “Magnetic and nonmagnetic contributions to the heat capacity of metamagnetic shape memory alloy,” J. Appl. Phys. 121 (18), 183901 (2017). CrossRef A. Kosogor, J. M. Barandiaran, V. A. L’vov, J. R. Fernandez, and V. A. Chernenko, “Magnetic and nonmagnetic contributions to the heat capacity of metamagnetic shape memory alloy,” J. Appl. Phys. 121 (18), 183901 (2017). CrossRef
116.
go back to reference G. A. Malygin, “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect,” Phys.-Usp. 44 (2), 173–197 (2001). CrossRef G. A. Malygin, “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect,” Phys.-Usp. 44 (2), 173–197 (2001). CrossRef
117.
go back to reference R. Abeyaratne, K. Sang-Joo, and J. K. Knowles, “A onedimensional continuum model for shape-memory alloys,” Int. J. Solids Struct. 31 (16), 2229–2249 (1994). CrossRef R. Abeyaratne, K. Sang-Joo, and J. K. Knowles, “A onedimensional continuum model for shape-memory alloys,” Int. J. Solids Struct. 31 (16), 2229–2249 (1994). CrossRef
118.
go back to reference T. Kanomata, Y. Kitsunai, K. Sano, Y. Furutani, H. Nishihara, R. Y. Umetsu, R. Kainuma, Y. Miura, and M. Shirai, “Magnetic properties of quaternary Heusler alloys Ni 2 – xCo xMnGa,” Phys. Rev. B 80 (21), 214402 (2009). CrossRef T. Kanomata, Y. Kitsunai, K. Sano, Y. Furutani, H. Nishihara, R. Y. Umetsu, R. Kainuma, Y. Miura, and M. Shirai, “Magnetic properties of quaternary Heusler alloys Ni 2 – xCo xMnGa,” Phys. Rev. B 80 (21), 214402 (2009). CrossRef
119.
go back to reference P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner, “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2, ErAl 2, and DyNi 2,” Phys. Rev. B 58 (18), 12110–12116 (1998). CrossRef P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner, “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl 2, ErAl 2, and DyNi 2,” Phys. Rev. B 58 (18), 12110–12116 (1998). CrossRef
120.
go back to reference P. J. von Ranke, V. K. Pecharsky, K. A. Gschneidner, Jr., and B. J. Korte, “Anomalous behavior of the magnetic entropy in PrNi 5,” Phys. Rev. B 58 (21), 14436–14441 (1998). CrossRef P. J. von Ranke, V. K. Pecharsky, K. A. Gschneidner, Jr., and B. J. Korte, “Anomalous behavior of the magnetic entropy in PrNi 5,” Phys. Rev. B 58 (21), 14436–14441 (1998). CrossRef
121.
go back to reference P. J. von Ranke, I. G. De Oliveira, A. P. Guimaraes, and X. A. da Silva, “Anomaly in the magnetocaloric effect in the intermetallic compound DyAl 2,” Phys. Rev. B 61 (1), 447–450 (2000). CrossRef P. J. von Ranke, I. G. De Oliveira, A. P. Guimaraes, and X. A. da Silva, “Anomaly in the magnetocaloric effect in the intermetallic compound DyAl 2,” Phys. Rev. B 61 (1), 447–450 (2000). CrossRef
122.
go back to reference P. J. von Ranke, N. A. De Oliveira, M. V. T. Costa, E. P. Nóbrega, A. Caldas, and I. G. De Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl 2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226, 970–972 (2001). CrossRef P. J. von Ranke, N. A. De Oliveira, M. V. T. Costa, E. P. Nóbrega, A. Caldas, and I. G. De Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl 2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226, 970–972 (2001). CrossRef
123.
go back to reference P. J. von Ranke, E. P. N’obrega, I. G. De Oliveira, A. M. Gomes, and R. S. Sarthour, “Influence of the crystalline electrical field on the magnetocaloric effect in the series RNi 2 ( R = Pr, Nd, Gd, Tb, Ho, Er),” Phys. Rev. B 63 (18), 184406 (2001). CrossRef P. J. von Ranke, E. P. N’obrega, I. G. De Oliveira, A. M. Gomes, and R. S. Sarthour, “Influence of the crystalline electrical field on the magnetocaloric effect in the series RNi 2 ( R = Pr, Nd, Gd, Tb, Ho, Er),” Phys. Rev. B 63 (18), 184406 (2001). CrossRef
124.
go back to reference N. A. De Oliveira, P. J. von Ranke, M. V. T. Costa, and A. Troper, “Magnetocaloric effect in the intermetallic compounds RCo 2 ( R = Dy, Ho, Er),” Phys. Rev. B 66 (9), 094402–6 (2002). CrossRef N. A. De Oliveira, P. J. von Ranke, M. V. T. Costa, and A. Troper, “Magnetocaloric effect in the intermetallic compounds RCo 2 ( R = Dy, Ho, Er),” Phys. Rev. B 66 (9), 094402–6 (2002). CrossRef
125.
go back to reference N. A. De Oliveira and P. J. von Ranke, “Magnetocaloric effect in the Laves phase pseudobinary (Er 1 ‒ cDy c)Co 2,” J. Magn. Magn. Mater. 264 (1), 55–61 (2003). CrossRef N. A. De Oliveira and P. J. von Ranke, “Magnetocaloric effect in the Laves phase pseudobinary (Er 1 ‒ cDy c)Co 2,” J. Magn. Magn. Mater. 264 (1), 55–61 (2003). CrossRef
126.
go back to reference E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in Gd 5(Si xGe 1–x) 4 compounds,” Phys. Rev. B 72 (13), 134426 (2005). CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in Gd 5(Si xGe 1–x) 4 compounds,” Phys. Rev. B 72 (13), 134426 (2005). CrossRef
127.
go back to reference E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in rare-earth-based compounds: a Monte Carlo study,” Phys. B (Amsterdam) 378, 716–717 (2006). CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in rare-earth-based compounds: a Monte Carlo study,” Phys. B (Amsterdam) 378, 716–717 (2006). CrossRef
128.
go back to reference E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in (Gd xTb 1 – x) 5Si 4 by Monte Carlo simulations,” Phys. Rev. B 74 (14), 144429–6 (2006). CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in (Gd xTb 1 – x) 5Si 4 by Monte Carlo simulations,” Phys. Rev. B 74 (14), 144429–6 (2006). CrossRef
129.
go back to reference E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in (Gd 0.6Tb 0.4) 5Si 4,” J. Magn. Magn. Mater. 310 (2), 2805–2807 (2007). CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in (Gd 0.6Tb 0.4) 5Si 4,” J. Magn. Magn. Mater. 310 (2), 2805–2807 (2007). CrossRef
130.
go back to reference E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “The magnetocaloric effect in R 5Si 4 ( R = Gd, Tb): a Monte Carlo calculation,” J. Condens. Matter Phys. 18 (4), 1275–1283 (2006). CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “The magnetocaloric effect in R 5Si 4 ( R = Gd, Tb): a Monte Carlo calculation,” J. Condens. Matter Phys. 18 (4), 1275–1283 (2006). CrossRef
131.
go back to reference E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in RAl 2 ( R = Dy, Er),” J. Appl. Phys. 99 (8), 08Q103 (2006). E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in RAl 2 ( R = Dy, Er),” J. Appl. Phys. 99 (8), 08Q103 (2006).
132.
go back to reference M. E. Gruner, E. Hoffmann, and P. Entel, “Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α-FeRh,” Phys. Rev. B 67 (6), 064415 (2003). CrossRef M. E. Gruner, E. Hoffmann, and P. Entel, “Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α-FeRh,” Phys. Rev. B 67 (6), 064415 (2003). CrossRef
133.
go back to reference L. M. Sandratskii and P. Mavropoulos, “Magnetic excitations and femtomagnetism of FeRh: a first-principles study,” Phys. Rev. B 83 (17), 174408–13 (2011). CrossRef L. M. Sandratskii and P. Mavropoulos, “Magnetic excitations and femtomagnetism of FeRh: a first-principles study,” Phys. Rev. B 83 (17), 174408–13 (2011). CrossRef
134.
go back to reference P. M. Derlet, “Landau–Heisenberg Hamiltonian model for FeRh,” Phys. Rev. B 85 (17), 174431 (2012). CrossRef P. M. Derlet, “Landau–Heisenberg Hamiltonian model for FeRh,” Phys. Rev. B 85 (17), 174431 (2012). CrossRef
135.
go back to reference J. Kudrnovský, V. Drchal, and I. Turek, “Physical properties of FeRh alloys: the antiferromagnetic to ferromagnetic transition,” Phys. Rev. B 91 (1), 014435 (2015). CrossRef J. Kudrnovský, V. Drchal, and I. Turek, “Physical properties of FeRh alloys: the antiferromagnetic to ferromagnetic transition,” Phys. Rev. B 91 (1), 014435 (2015). CrossRef
136.
go back to reference S. Polesya, S. Mankovsky, D. Ködderitzsch, J. Minár, and H. Ebert, “Finite-temperature magnetism of FeRh compounds,” Phys. Rev. B 93 (2), 024423 (2016). CrossRef S. Polesya, S. Mankovsky, D. Ködderitzsch, J. Minár, and H. Ebert, “Finite-temperature magnetism of FeRh compounds,” Phys. Rev. B 93 (2), 024423 (2016). CrossRef
137.
go back to reference M. Blume, “Theory of the first-order magnetic phase change in UO 2,” Phys. Rev. 141 (2), 517–524 (1966). CrossRef M. Blume, “Theory of the first-order magnetic phase change in UO 2,” Phys. Rev. 141 (2), 517–524 (1966). CrossRef
138.
go back to reference H. W. Capel, “On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting,” Physica 32 (5), 966–988 (1966). CrossRef H. W. Capel, “On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting,” Physica 32 (5), 966–988 (1966). CrossRef
139.
go back to reference M. E. Gruner, R. Meyer, and P. Entel, “Monte Carlo simulations of high-moment–low-moment transitions in Invar alloys,” Eur. Phys. J. B 2 (1), 107–119 (1998). CrossRef M. E. Gruner, R. Meyer, and P. Entel, “Monte Carlo simulations of high-moment–low-moment transitions in Invar alloys,” Eur. Phys. J. B 2 (1), 107–119 (1998). CrossRef
140.
go back to reference B. K. Ponomarev, “Investigation of the antiferroferromagnetism transition in an FeRh alloy in a pulsed magnetic field up to 300 kOe,” Sov. J. Exp. Theor. Phys. 36, 105–107 (1973). B. K. Ponomarev, “Investigation of the antiferroferromagnetism transition in an FeRh alloy in a pulsed magnetic field up to 300 kOe,” Sov. J. Exp. Theor. Phys. 36, 105–107 (1973).
141.
go back to reference V. V. Sokolovskiy, V. D. Buchelnikov, and P. Entel, “Optimization of the magnetocaloric effect in Ni–Mn–In alloys: a theoretical study,” J. Exp. Theor. Phys. 115 (4), 662–665 (2012). CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, and P. Entel, “Optimization of the magnetocaloric effect in Ni–Mn–In alloys: a theoretical study,” J. Exp. Theor. Phys. 115 (4), 662–665 (2012). CrossRef
142.
go back to reference V. V. Sokolovskiy, V. D. Buchelnikov, V. V. Khovaylo, S. V. Taskaev, and P. Entel, “Tuning magnetic exchange interactions to enhance magnetocaloric effect in Ni 50Mn 34In 16 Heusler alloy: Monte Carlo and ab initio studies,” Int. J. Refrig. 37, 273–280 (2014). CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, V. V. Khovaylo, S. V. Taskaev, and P. Entel, “Tuning magnetic exchange interactions to enhance magnetocaloric effect in Ni 50Mn 34In 16 Heusler alloy: Monte Carlo and ab initio studies,” Int. J. Refrig. 37, 273–280 (2014). CrossRef
143.
go back to reference V. V. Sokolovskiy, V. D. Buchelnikov, S. V. Taskaev, V. V. Khovaylo, M. Ogura, and P. Entel, “Quaternary Ni–Mn–In–Y Heusler alloys: a way to achieve materials with better magnetocaloric properties?” J. Phys. D: Appl. Phys. 46 (30), 305003 (2013). CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, S. V. Taskaev, V. V. Khovaylo, M. Ogura, and P. Entel, “Quaternary Ni–Mn–In–Y Heusler alloys: a way to achieve materials with better magnetocaloric properties?” J. Phys. D: Appl. Phys. 46 (30), 305003 (2013). CrossRef
144.
go back to reference V. V. Sokolovskiy, R. R. Fayzullin, V. D. Buchelnikov, M. O. Drobosyuk, S. V. Taskaev, and V. V. Khovaylo, “Theoretical treatment and direct measurements of magnetocaloric effect in Ni 2.19 – xFe xMn 0.81Ga Heusler alloys,” J. Magn. Magn. Mater. 343, 6–12 (2013). CrossRef V. V. Sokolovskiy, R. R. Fayzullin, V. D. Buchelnikov, M. O. Drobosyuk, S. V. Taskaev, and V. V. Khovaylo, “Theoretical treatment and direct measurements of magnetocaloric effect in Ni 2.19 – xFe xMn 0.81Ga Heusler alloys,” J. Magn. Magn. Mater. 343, 6–12 (2013). CrossRef
145.
go back to reference V. Sokolovskiy, V. Buchelnikov, K. Skokov, O. Gutfleisch, D. Karpenkov, Yu. Koshkid’ko, H. Miki, I. Dubenko, N. Ali, S. Stadler, and V. Khovaylo, “Magnetocaloric and magnetic properties of Ni 2Mn 1 – xCu xGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations,” J. Appl. Phys. 114 (18), 183913 (2013). CrossRef V. Sokolovskiy, V. Buchelnikov, K. Skokov, O. Gutfleisch, D. Karpenkov, Yu. Koshkid’ko, H. Miki, I. Dubenko, N. Ali, S. Stadler, and V. Khovaylo, “Magnetocaloric and magnetic properties of Ni 2Mn 1 – xCu xGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations,” J. Appl. Phys. 114 (18), 183913 (2013). CrossRef
146.
go back to reference N. Singh and R. Arróyave, “Magnetocaloric effects in Ni–Mn–Ga–Fe alloys using Monte Carlo simulations,” J. Appl. Phys. 113 (18), 183904 (2013). CrossRef N. Singh and R. Arróyave, “Magnetocaloric effects in Ni–Mn–Ga–Fe alloys using Monte Carlo simulations,” J. Appl. Phys. 113 (18), 183904 (2013). CrossRef
147.
go back to reference S. Ghosh and S. Ghosh, “Giant magnetocaloric effect driven by first-order magnetostructural transition in cosubstituted Ni–Mn–Sb Heusler compounds: predictions from ab initio and Monte Carlo calculations,” Phys. Rev. B 103 (5), 054101 (2021). CrossRef S. Ghosh and S. Ghosh, “Giant magnetocaloric effect driven by first-order magnetostructural transition in cosubstituted Ni–Mn–Sb Heusler compounds: predictions from ab initio and Monte Carlo calculations,” Phys. Rev. B 103 (5), 054101 (2021). CrossRef
148.
go back to reference R. Masrour, A. Jabar, and E. K. Hlil, “Modeling of the magnetocaloric effect in Heusler Ni 2MnGa alloy: Ab initio calculations and Monte Carlo simulations,” Intermetallics 91, 120–123 (2017). CrossRef R. Masrour, A. Jabar, and E. K. Hlil, “Modeling of the magnetocaloric effect in Heusler Ni 2MnGa alloy: Ab initio calculations and Monte Carlo simulations,” Intermetallics 91, 120–123 (2017). CrossRef
149.
go back to reference T. Castán, E. Vives, and P.-A. Lindgård, “Modeling premartensitic effects in Ni 2MnGa: a mean-field and Monte Carlo simulation study,” Phys. Rev. B 60 (10), 7071–7084 (1999). CrossRef T. Castán, E. Vives, and P.-A. Lindgård, “Modeling premartensitic effects in Ni 2MnGa: a mean-field and Monte Carlo simulation study,” Phys. Rev. B 60 (10), 7071–7084 (1999). CrossRef
150.
go back to reference V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, “First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni 2+xMn 1–xGa,” Phys. Rev. B 81 (9), 094411 (2010). CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, “First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni 2+xMn 1–xGa,” Phys. Rev. B 81 (9), 094411 (2010). CrossRef
151.
go back to reference V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, V. V. Khovaylo, A. A. Aliev, L. N. Khanov, A. B. Batdalov, P. Entel, H. Miki, and T. Takagi, “Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn– X ( X = Ga, In) Heusler alloys,” J. Phys. D: Appl. Phys. 44 (6), 064012 (2011). CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, V. V. Khovaylo, A. A. Aliev, L. N. Khanov, A. B. Batdalov, P. Entel, H. Miki, and T. Takagi, “Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn– X ( X = Ga, In) Heusler alloys,” J. Phys. D: Appl. Phys. 44 (6), 064012 (2011). CrossRef
152.
go back to reference V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K. Nayak, “Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni–Mn– X alloys ( X = In, Sn, Sb),” Phys. Rev. B 78 (18), 184427 (2008). CrossRef V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K. Nayak, “Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni–Mn– X alloys ( X = In, Sn, Sb),” Phys. Rev. B 78 (18), 184427 (2008). CrossRef
153.
go back to reference X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E. F. Wassermann, and T. Krenke, “Cooling and heating by adiabatic magnetization in the Ni 50Mn 34In 16 magnetic shape-memory alloy,” Phys. Rev. B 75 (18), 184412 (2007). CrossRef X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E. F. Wassermann, and T. Krenke, “Cooling and heating by adiabatic magnetization in the Ni 50Mn 34In 16 magnetic shape-memory alloy,” Phys. Rev. B 75 (18), 184412 (2007). CrossRef
154.
go back to reference M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, “The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni 50Mn 34In 16,” J. Magn. Magn. Mater. 368, 191–197 (2014). CrossRef M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, “The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni 50Mn 34In 16,” J. Magn. Magn. Mater. 368, 191–197 (2014). CrossRef
155.
go back to reference D. E. Soto-Parra, X. Moya, L. Mañosa, A. Planes, H. Flores-Zúñiga, F. Alvarado-Hernández, R. A. Ochoa-Gamboa, J. A. Matutes-Aquino, and D. Ríos-Jara, “Fe and Co selective substitution in Ni 2MnGa: effect of magnetism on relative phase stability,” Philos. Mag. Lett. 90 (20), 2771–2792 (2010). CrossRef D. E. Soto-Parra, X. Moya, L. Mañosa, A. Planes, H. Flores-Zúñiga, F. Alvarado-Hernández, R. A. Ochoa-Gamboa, J. A. Matutes-Aquino, and D. Ríos-Jara, “Fe and Co selective substitution in Ni 2MnGa: effect of magnetism on relative phase stability,” Philos. Mag. Lett. 90 (20), 2771–2792 (2010). CrossRef
156.
go back to reference D. E. Soto-Parra, E. Vives, D. González-Alonso, L. Mañosa, A. Planes, R. Romero, J. A. Matutes-Aquino, R. A. Ochoa-Gamboa, and H. Flores-Zúñiga, “Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape memory alloys,” Appl. Phys. Lett. 96 (7), 071912 (2010). CrossRef D. E. Soto-Parra, E. Vives, D. González-Alonso, L. Mañosa, A. Planes, R. Romero, J. A. Matutes-Aquino, R. A. Ochoa-Gamboa, and H. Flores-Zúñiga, “Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape memory alloys,” Appl. Phys. Lett. 96 (7), 071912 (2010). CrossRef
157.
go back to reference A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys,” J. Phys. D: Appl. Phys. 42 (3), 035009 (2009). CrossRef A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys,” J. Phys. D: Appl. Phys. 42 (3), 035009 (2009). CrossRef
158.
go back to reference V. V. Sokolovskiy, O. Pavlukhina, V. D. Buchelnikov, and P. Entel, “Monte Carlo and first-principles approaches for single crystal and polycrystalline Ni 2MnGa Heusler alloys,” J. Phys. D: Appl. Phys. 47 (42), 4250023 (2014). CrossRef V. V. Sokolovskiy, O. Pavlukhina, V. D. Buchelnikov, and P. Entel, “Monte Carlo and first-principles approaches for single crystal and polycrystalline Ni 2MnGa Heusler alloys,” J. Phys. D: Appl. Phys. 47 (42), 4250023 (2014). CrossRef
159.
go back to reference D. Comtesse, M. E. Gruner, M. Ogura, V. V. Sokolov-skiy, V. D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottschall, O. Gutfleisch, V. A. Chernenko, F. Albertini, S. Fähler, and P. Entel, “First-principles calculation of the instability leading to giant inverse magnetocaloric effects,” Phys. Rev. B 89 (18), 184403 (2014). CrossRef D. Comtesse, M. E. Gruner, M. Ogura, V. V. Sokolov-skiy, V. D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottschall, O. Gutfleisch, V. A. Chernenko, F. Albertini, S. Fähler, and P. Entel, “First-principles calculation of the instability leading to giant inverse magnetocaloric effects,” Phys. Rev. B 89 (18), 184403 (2014). CrossRef
160.
go back to reference V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Tufatullina, and P. Entel, “First principles investigation of structural and magnetic properties of Ni–Co–Mn–In Heusler alloys,” J. Phys. D: Appl. Phys. 48 (16), 164005 (2015). CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Tufatullina, and P. Entel, “First principles investigation of structural and magnetic properties of Ni–Co–Mn–In Heusler alloys,” J. Phys. D: Appl. Phys. 48 (16), 164005 (2015). CrossRef
161.
go back to reference P. Entel, V. V. Sokolovskiy, V. D. Buchelnikov, M. Ogura, M. E. Gruner, A. Grünebohm, D. Comtesse, and H. Akai, “The metamagnetic behavior and giant inverse magnetocaloric effect in Ni–Co–Mn–(Ga, In, Sn) Heusler alloys,” J. Magn. Magn. Mater. 385, 193–197 (2015). CrossRef P. Entel, V. V. Sokolovskiy, V. D. Buchelnikov, M. Ogura, M. E. Gruner, A. Grünebohm, D. Comtesse, and H. Akai, “The metamagnetic behavior and giant inverse magnetocaloric effect in Ni–Co–Mn–(Ga, In, Sn) Heusler alloys,” J. Magn. Magn. Mater. 385, 193–197 (2015). CrossRef
162.
go back to reference V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Klyuchnikova, and P. Entel, “First-principles study of the structural and magnetic properties of the Ni 45Co 5Mn 39Sn 11 Heusler alloy,” J. Magn. Magn. Mater. 383, 180–185 (2015). CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Klyuchnikova, and P. Entel, “First-principles study of the structural and magnetic properties of the Ni 45Co 5Mn 39Sn 11 Heusler alloy,” J. Magn. Magn. Mater. 383, 180–185 (2015). CrossRef
163.
go back to reference V. Sokolovskiy, A. Gru¨nebohm, V. Buchelnikov, and P. Entel, “Ab initio and Monte Carlo approaches for the magnetocaloric effect in Co- and In-doped Ni–Mn–Ga Heusler alloys,” Entropy 16 (9), 4992–5019 (2014). CrossRef V. Sokolovskiy, A. Gru¨nebohm, V. Buchelnikov, and P. Entel, “Ab initio and Monte Carlo approaches for the magnetocaloric effect in Co- and In-doped Ni–Mn–Ga Heusler alloys,” Entropy 16 (9), 4992–5019 (2014). CrossRef
164.
go back to reference V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. E. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91 (22), 220409 (2015). CrossRef V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. E. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91 (22), 220409 (2015). CrossRef
165.
go back to reference V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin, A. Grünebohm, and P. Entel, “Predictions of a large magnetocaloric effect in Co- and Cr-substituted Heusler alloys using first-principles and Monte Carlo approaches,” Phys. Procedia 75, 1381–1388 (2015). CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin, A. Grünebohm, and P. Entel, “Predictions of a large magnetocaloric effect in Co- and Cr-substituted Heusler alloys using first-principles and Monte Carlo approaches,” Phys. Procedia 75, 1381–1388 (2015). CrossRef
166.
go back to reference V. Sokolovskiy, O. Miroshkina, M. Zagrebin, and V. Buchelnikov, “Prediction of giant magnetocaloric effect in Ni 40Co 10Mn 36Al 14 Heusler alloys: an insight from ab initio and Monte Carlo calculations,” J. Appl. Phys. 127 (16), 163901 (2020). CrossRef V. Sokolovskiy, O. Miroshkina, M. Zagrebin, and V. Buchelnikov, “Prediction of giant magnetocaloric effect in Ni 40Co 10Mn 36Al 14 Heusler alloys: an insight from ab initio and Monte Carlo calculations,” J. Appl. Phys. 127 (16), 163901 (2020). CrossRef
167.
go back to reference V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn, Al) Heusler alloys: theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018). CrossRef V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn, Al) Heusler alloys: theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018). CrossRef
168.
go back to reference L. Chen, F. X. Hu, J. Wang, J. L. Zhao, J. R. Sun, B. G. Shen, J. H. Yin, and L. Q. Pan, “Tuning martensitic transformation and magnetoresistance effect by low temperature annealing in Ni 45Co 5Mn 36.6In 13.4 alloys,” J. Phys. D: Appl. Phys. 44 (8), 085002 (2011). CrossRef L. Chen, F. X. Hu, J. Wang, J. L. Zhao, J. R. Sun, B. G. Shen, J. H. Yin, and L. Q. Pan, “Tuning martensitic transformation and magnetoresistance effect by low temperature annealing in Ni 45Co 5Mn 36.6In 13.4 alloys,” J. Phys. D: Appl. Phys. 44 (8), 085002 (2011). CrossRef
169.
go back to reference E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, “First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni 2MnX (X = Ga, In, Sn, Sb),” Phys. Rev. B 70 (2), 024427 (2004). CrossRef E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, “First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni 2MnX (X = Ga, In, Sn, Sb),” Phys. Rev. B 70 (2), 024427 (2004). CrossRef
170.
go back to reference I. Galanakis and E. Şaşıoğlu, “Variation of the magnetic properties of Ni 2MnGa Heusler alloy upon tetragonalization: a first-principles study,” J. Phys. D: Appl. Phys. 44 (23), 235001 (2011). CrossRef I. Galanakis and E. Şaşıoğlu, “Variation of the magnetic properties of Ni 2MnGa Heusler alloy upon tetragonalization: a first-principles study,” J. Phys. D: Appl. Phys. 44 (23), 235001 (2011). CrossRef
171.
go back to reference F. Albertini, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Pareti, Z. Arnold, and G. Calestani, “Magnetoelastic effects and magnetic anisotropy in Ni 2MnGa polycrystals,” J. Appl. Phys. 89 (10), 5614–5617 (2001). CrossRef F. Albertini, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Pareti, Z. Arnold, and G. Calestani, “Magnetoelastic effects and magnetic anisotropy in Ni 2MnGa polycrystals,” J. Appl. Phys. 89 (10), 5614–5617 (2001). CrossRef
172.
go back to reference F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, and L. Righi, “Composition and temperature dependence of the magnetocrystalline anisotropy in Ni 2 + xMn 1 + yGa 1 + z ( x + y + z = 0) Heusler alloys,” Appl. Phys. Lett. 81 (21), 4032–4034 (2002). CrossRef F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, and L. Righi, “Composition and temperature dependence of the magnetocrystalline anisotropy in Ni 2 + xMn 1 + yGa 1 + z ( x + y + z = 0) Heusler alloys,” Appl. Phys. Lett. 81 (21), 4032–4034 (2002). CrossRef
173.
go back to reference J. Enkovaara, A. Ayuela, L. Nordström, and R. M. Nieminen, “Magnetic anisotropy in Ni 2MnGa,” Phys. Rev. B: Condens. Matter Mater. Phys. 65 (13), 134422 (2002). CrossRef J. Enkovaara, A. Ayuela, L. Nordström, and R. M. Nieminen, “Magnetic anisotropy in Ni 2MnGa,” Phys. Rev. B: Condens. Matter Mater. Phys. 65 (13), 134422 (2002). CrossRef
174.
go back to reference J. Enkovaara, A. Ayuela, A.T. Zayak, P. Entel, L. Nordström, M. Dube, J. Jalkanen, J. Impola, and R. M. Nieminen, “Magnetically driven shape memory alloys,” Mater. Sci. Eng., A 378 (1–2), 52–60 (2004). CrossRef J. Enkovaara, A. Ayuela, A.T. Zayak, P. Entel, L. Nordström, M. Dube, J. Jalkanen, J. Impola, and R. M. Nieminen, “Magnetically driven shape memory alloys,” Mater. Sci. Eng., A 378 (1–2), 52–60 (2004). CrossRef
175.
go back to reference V. Sokolovskiy, M. A. Zagrebin, V. Buchelnikov, and P. Entel, “Monte Carlo simulations of thermal hysteresis in Ni–Mn-based Heusler alloys,” Phys. Status Solidi B 255 (2), 1700265 (2018). CrossRef V. Sokolovskiy, M. A. Zagrebin, V. Buchelnikov, and P. Entel, “Monte Carlo simulations of thermal hysteresis in Ni–Mn-based Heusler alloys,” Phys. Status Solidi B 255 (2), 1700265 (2018). CrossRef
176.
go back to reference V. Sokolovskiy, M. Zagrebin, and V. Buchelnikov, “Monte Carlo simulations of hysteresis effects at the martensitic transformation,” Phys. B (Amsterdam) 575, 411692 (2019). CrossRef V. Sokolovskiy, M. Zagrebin, and V. Buchelnikov, “Monte Carlo simulations of hysteresis effects at the martensitic transformation,” Phys. B (Amsterdam) 575, 411692 (2019). CrossRef
177.
go back to reference R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439 (7079), 957–960 (2006). CrossRef R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439 (7079), 957–960 (2006). CrossRef
178.
go back to reference D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60 (13–14), 5335–5351 (2012). CrossRef D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60 (13–14), 5335–5351 (2012). CrossRef
179.
go back to reference D. Y. Cong, L. Huang, V. Hardy, D. Bourgault, X. M. Sun, Z. H. Nie, M. G. Wang, Y. Ren, P. Entel, and Y. D. Wang, “Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy,” Acta Mater. 146, 142–151 (2018). CrossRef D. Y. Cong, L. Huang, V. Hardy, D. Bourgault, X. M. Sun, Z. H. Nie, M. G. Wang, Y. Ren, P. Entel, and Y. D. Wang, “Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy,” Acta Mater. 146, 142–151 (2018). CrossRef
Metadata
Title
Review of Modern Theoretical Approaches for Study of Magnetocaloric Materials
Authors
V. V. Sokolovskiy
O. N. Miroshkina
V. D. Buchelnikov
Publication date
01-04-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040111