Skip to main content
Top

2013 | OriginalPaper | Chapter

Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication

Authors : Osama A. M. Abdelaal, Saied M. H. Darwish

Published in: Characterization and Development of Biosystems and Biomaterials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tissue engineering scaffold is a 3D construction that acts as a template for tissue regeneration. The scaffold should have some basic requirements including biocompatibility, suitable mechanical properties, appropriate surface chemistry, high porosity and interconnectivity. Although several conventional techniques such as solvent casting and gas forming are utilized in scaffold fabrication, these processes show poor interconnectivity and uncontrollable porosity of the produced scaffolds. However, Rapid Prototyping (RP) techniques which are a group of advanced manufacturing processes can produce custom made objects directly from computer data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Using RP fabrication techniques, constructions with controllable and complex internal architecture with appropriate mechanical properties can be achieved.The present chapter intends to provide an overview of the current state of the art in the area of tissue engineering scaffolds fabrication, using advanced RP processes. The present work highlights also the existing limitations in addition to future prospects in scaffold fabrication via RP techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moroni, L., De Wing, J.R., Van Blitterswijk, C.A.: Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer. Edn. 19, 543–573 (2008)CrossRef Moroni, L., De Wing, J.R., Van Blitterswijk, C.A.: Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer. Edn. 19, 543–573 (2008)CrossRef
2.
go back to reference Agrawal, C.M., Ray, R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55, 141–150 (2001)CrossRef Agrawal, C.M., Ray, R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55, 141–150 (2001)CrossRef
3.
go back to reference Das, S., Hollister, S.J.: Tissue engineering scaffolds. In: Buschow, K.H., Cahn, R.W., Flemings, M.C. (eds.) Encyclopedia of Materials: Science and Technology, 2nd edn. Elsevier, Oxford (2003) Das, S., Hollister, S.J.: Tissue engineering scaffolds. In: Buschow, K.H., Cahn, R.W., Flemings, M.C. (eds.) Encyclopedia of Materials: Science and Technology, 2nd edn. Elsevier, Oxford (2003)
4.
go back to reference Lim, T.C., Bang, C.P., Chian, K.S., Leong, K.F.: Development of cryogenic prototyping for tissue engineering. Virtual. phys. prototyping 3, 25–31 (2008)CrossRef Lim, T.C., Bang, C.P., Chian, K.S., Leong, K.F.: Development of cryogenic prototyping for tissue engineering. Virtual. phys. prototyping 3, 25–31 (2008)CrossRef
5.
go back to reference Bártolo, P.J., Almeida, H.A., Rezende, R.A., Laoui, T., Bidanda, B.: Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda, B., Bártolo, P.J. (eds.) Virtual Prototyping and Bio Manufacturing in Medical Applications, 1st edn. Springer, US (2008)CrossRef Bártolo, P.J., Almeida, H.A., Rezende, R.A., Laoui, T., Bidanda, B.: Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda, B., Bártolo, P.J. (eds.) Virtual Prototyping and Bio Manufacturing in Medical Applications, 1st edn. Springer, US (2008)CrossRef
6.
go back to reference Woodfield, T.B., Malda, J., De Wijn, J., Péters, F., Riesle, J., van Blitterswijk, C.A.: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4164 (2004)CrossRef Woodfield, T.B., Malda, J., De Wijn, J., Péters, F., Riesle, J., van Blitterswijk, C.A.: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4164 (2004)CrossRef
7.
go back to reference Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupy, R.: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37, 3107–3116 (2002)CrossRef Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupy, R.: Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37, 3107–3116 (2002)CrossRef
8.
go back to reference Wang, F., Shor, L., Darling, A., Khalil, S., Sun, W., Güçeri, S., Lau, A.: Precision extruding deposition and characterization of cellular poly-1-caprolactone tissue scaffolds. Rapid Prototyping J. 10, 42–49 (2004)CrossRef Wang, F., Shor, L., Darling, A., Khalil, S., Sun, W., Güçeri, S., Lau, A.: Precision extruding deposition and characterization of cellular poly-1-caprolactone tissue scaffolds. Rapid Prototyping J. 10, 42–49 (2004)CrossRef
9.
go back to reference Espalin, D., Arcaute, K., Rodriguez, D., Medina, F.: Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping J. 16, 164–173 (2010)CrossRef Espalin, D., Arcaute, K., Rodriguez, D., Medina, F.: Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping J. 16, 164–173 (2010)CrossRef
10.
go back to reference Yen, H.J., Tseng, C.S., Hsu, S.H., Tsai, C.L.: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed. Microdevices 11, 615–624 (2009)CrossRef Yen, H.J., Tseng, C.S., Hsu, S.H., Tsai, C.L.: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed. Microdevices 11, 615–624 (2009)CrossRef
11.
go back to reference Tellis, B.C., Szivek, J.A., Bliss, C.L., Margolis, D.S., Vaidyanathan, R.K., Calvert, P.: Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng., C 28, 171–178 (2008)CrossRef Tellis, B.C., Szivek, J.A., Bliss, C.L., Margolis, D.S., Vaidyanathan, R.K., Calvert, P.: Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng., C 28, 171–178 (2008)CrossRef
12.
go back to reference Geffre, C.P., Margolis, D.S., Ruth, J.T., DeYoung, D.W., Tellis, B.C., Szivek, J.A.: A novel biomimetic polymer scaffold design enhances bone ingrowth. J. Biomed. Mater. Res., Part A 91A, 795–805 (2009)CrossRef Geffre, C.P., Margolis, D.S., Ruth, J.T., DeYoung, D.W., Tellis, B.C., Szivek, J.A.: A novel biomimetic polymer scaffold design enhances bone ingrowth. J. Biomed. Mater. Res., Part A 91A, 795–805 (2009)CrossRef
13.
go back to reference Li, J.P., De Wijn, J.R., van Blitterswijk, C.A., de Groot, K.: The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4 V for orthopedic implants. J. Biomed. Mater. Res., Part A 92A, 33–42 (2010)CrossRef Li, J.P., De Wijn, J.R., van Blitterswijk, C.A., de Groot, K.: The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4 V for orthopedic implants. J. Biomed. Mater. Res., Part A 92A, 33–42 (2010)CrossRef
14.
go back to reference Woodfield, T.B., Guggenheim, M., von Rechenberg, B., Riesle, J., van Blitterswijk, C.A., Wedler, V.: Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 42, 485–497 (2009)CrossRef Woodfield, T.B., Guggenheim, M., von Rechenberg, B., Riesle, J., van Blitterswijk, C.A., Wedler, V.: Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 42, 485–497 (2009)CrossRef
15.
go back to reference Shor, L., Güçeri, S., Wen, X., Gandhi, M., Sun, W.: Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28, 2591–5297 (2007)CrossRef Shor, L., Güçeri, S., Wen, X., Gandhi, M., Sun, W.: Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28, 2591–5297 (2007)CrossRef
16.
go back to reference Yildirim, E.D., Besunder, R., Guceri, S., Allen, F., Sun, W.: Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function. Virtual Phys. Prototyping 3, 199–207 (2008)CrossRef Yildirim, E.D., Besunder, R., Guceri, S., Allen, F., Sun, W.: Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function. Virtual Phys. Prototyping 3, 199–207 (2008)CrossRef
17.
go back to reference Xiong, Z., Yan, Y., Wang, S., Zhang, R., Zhang, C.: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater. 46, 771–776 (2002)CrossRef Xiong, Z., Yan, Y., Wang, S., Zhang, R., Zhang, C.: Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater. 46, 771–776 (2002)CrossRef
18.
go back to reference Li, J., Zhang, L., Lv, S., Li, S., Wang, N., Zhang, Z.: Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. J. Biotechnol. 151, 87–93 (2011)CrossRef Li, J., Zhang, L., Lv, S., Li, S., Wang, N., Zhang, Z.: Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. J. Biotechnol. 151, 87–93 (2011)CrossRef
19.
go back to reference Mäkitie, A.A., Yan, Y., Wang, X., Xiong, Z., Paloheimo, K.S., Tuomi, J., Paloheimo, M., Salo, J., Renkonen, R.: In Vitro evaluation of a 3D PLGA–TCP composite scaffold in an experimental bioreactor. J. Bioact. Compatible Polym. 24, 75–83 (2009)CrossRef Mäkitie, A.A., Yan, Y., Wang, X., Xiong, Z., Paloheimo, K.S., Tuomi, J., Paloheimo, M., Salo, J., Renkonen, R.: In Vitro evaluation of a 3D PLGA–TCP composite scaffold in an experimental bioreactor. J. Bioact. Compatible Polym. 24, 75–83 (2009)CrossRef
20.
go back to reference Chua, C.K., Leong, K.F., Tan, K.H.: Specialized fabrication processes: Rapid prototyping. In: Narayan, R. (ed.) Biomedical Materials. Springer Science + Business Media, New York (2009)CrossRef Chua, C.K., Leong, K.F., Tan, K.H.: Specialized fabrication processes: Rapid prototyping. In: Narayan, R. (ed.) Biomedical Materials. Springer Science + Business Media, New York (2009)CrossRef
21.
go back to reference Park, S.A., Lee, S.H., Kim, W.D.: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst. Eng. 34, 505–513 (2010)CrossRef Park, S.A., Lee, S.H., Kim, W.D.: Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst. Eng. 34, 505–513 (2010)CrossRef
22.
go back to reference Sobral, J.M., Caridade, S.G., Sousa, R.A., Mano, J.F., Reis, R.L.: Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7, 1009–1018 (2011)CrossRef Sobral, J.M., Caridade, S.G., Sousa, R.A., Mano, J.F., Reis, R.L.: Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7, 1009–1018 (2011)CrossRef
23.
go back to reference Park, S., Kim, G.H., Jeon, Y.C., Koh, Y.H., Kim, W.D.: 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20, 229–234 (2009)CrossRef Park, S., Kim, G.H., Jeon, Y.C., Koh, Y.H., Kim, W.D.: 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20, 229–234 (2009)CrossRef
24.
go back to reference Yilgor, P., Sousa, R.A., Reis, R.L., Hasirci, N., Hasirci, V.: 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromol. Symp. 269, 92–99 (2008)CrossRef Yilgor, P., Sousa, R.A., Reis, R.L., Hasirci, N., Hasirci, V.: 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromol. Symp. 269, 92–99 (2008)CrossRef
25.
go back to reference Son, J.G., Kim, G.H.: Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces. J. Biomater. Sci. 20, 2089–2101 (2009)CrossRef Son, J.G., Kim, G.H.: Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces. J. Biomater. Sci. 20, 2089–2101 (2009)CrossRef
26.
go back to reference Kim, G.H., Son, J.G.: 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter. Appl. Phys. A 94, 781–785 (2009)CrossRef Kim, G.H., Son, J.G.: 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter. Appl. Phys. A 94, 781–785 (2009)CrossRef
27.
go back to reference Jun-Hee, L., Su-A, P., KoEun, P., Jae-Hyun, K., Kyung-Shik, K., Jihye, L., WanDoo, K.: Fabrication and characterization of 3D scaffold using 3D plotting system. Chinese Sci Bull 55, 94–98 (2010)CrossRef Jun-Hee, L., Su-A, P., KoEun, P., Jae-Hyun, K., Kyung-Shik, K., Jihye, L., WanDoo, K.: Fabrication and characterization of 3D scaffold using 3D plotting system. Chinese Sci Bull 55, 94–98 (2010)CrossRef
28.
go back to reference Daoud, J.T., Petropavlovskaia, M.S., Patapas, J.M., Degrandpré, C.E., DiRaddo, R.W., Rosenberg, L., Tabrizian, M.: Long-term in vitro hum an pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 32, 1536–1542 (2011)CrossRef Daoud, J.T., Petropavlovskaia, M.S., Patapas, J.M., Degrandpré, C.E., DiRaddo, R.W., Rosenberg, L., Tabrizian, M.: Long-term in vitro hum an pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 32, 1536–1542 (2011)CrossRef
29.
go back to reference Ye, L., Zeng, X., Li, H., Ai, Y.: Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(e-caprolactone) composite scaffold by using prototyping controlled process. J. Mater. Sci. Mater. Med. 21, 753–760 (2010)CrossRef Ye, L., Zeng, X., Li, H., Ai, Y.: Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(e-caprolactone) composite scaffold by using prototyping controlled process. J. Mater. Sci. Mater. Med. 21, 753–760 (2010)CrossRef
30.
go back to reference Oliveira, A.L., Costa, S.A., Sousa, R.A., Reis, R.L.: Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffol ds: Effect of static and dynamic coating conditions. Acta Biomater. 5, 1626–1638 (2009)CrossRef Oliveira, A.L., Costa, S.A., Sousa, R.A., Reis, R.L.: Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffol ds: Effect of static and dynamic coating conditions. Acta Biomater. 5, 1626–1638 (2009)CrossRef
31.
go back to reference Haberstroh, K., Ritter, K., Kuschnierz, J., Bormann, K.H., Kaps, C., Carvalho, C., Mülhaupt, R., Sittinger, M., Gellrich, N.C.: Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 520–530 (2010)CrossRef Haberstroh, K., Ritter, K., Kuschnierz, J., Bormann, K.H., Kaps, C., Carvalho, C., Mülhaupt, R., Sittinger, M., Gellrich, N.C.: Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 520–530 (2010)CrossRef
32.
go back to reference Hoelzle, D.J., Alleyne, A.G., Johnson, A.J.: Micro-robotic deposition guidelines by a design of experiments approach to maximize fabrication reliability for the bone scaffold application. Acta Biomater. 4, 897–912 (2008)CrossRef Hoelzle, D.J., Alleyne, A.G., Johnson, A.J.: Micro-robotic deposition guidelines by a design of experiments approach to maximize fabrication reliability for the bone scaffold application. Acta Biomater. 4, 897–912 (2008)CrossRef
33.
go back to reference Miranda, P., Saiz, E., Gryn, K., Tomsia, A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2, 457–466 (2006)CrossRef Miranda, P., Saiz, E., Gryn, K., Tomsia, A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2, 457–466 (2006)CrossRef
34.
go back to reference Martinez-Vazquez, F.J., Perera, F.H., Miranda, P., Pajares, A., Guiberteau, F.: Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 6, 4361–4368 (2010)CrossRef Martinez-Vazquez, F.J., Perera, F.H., Miranda, P., Pajares, A., Guiberteau, F.: Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 6, 4361–4368 (2010)CrossRef
35.
go back to reference Miranda, P., Pajares, A., Guiberteau, F.: Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater. 4, 1715–1724 (2008)CrossRef Miranda, P., Pajares, A., Guiberteau, F.: Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater. 4, 1715–1724 (2008)CrossRef
36.
go back to reference Kim, J.Y., Cho, D.W.: The optimization of hybrid scaffold fabrication process in precision deposition system using design of experiments. Microsyst. Technol. 15, 843–851 (2009)CrossRef Kim, J.Y., Cho, D.W.: The optimization of hybrid scaffold fabrication process in precision deposition system using design of experiments. Microsyst. Technol. 15, 843–851 (2009)CrossRef
37.
go back to reference Kim, J.Y., Cho, D.W.: Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng. 86, 1447–1450 (2009)CrossRef Kim, J.Y., Cho, D.W.: Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng. 86, 1447–1450 (2009)CrossRef
38.
go back to reference Lam, C.X., Olkowski, R., Swieszkowski, W., Tan, K.C., Gibson, I., Hutmacher, D.W.: Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys. Prototyping 3, 193–197 (2008)CrossRef Lam, C.X., Olkowski, R., Swieszkowski, W., Tan, K.C., Gibson, I., Hutmacher, D.W.: Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys. Prototyping 3, 193–197 (2008)CrossRef
39.
go back to reference Arafat, M.T., Lam, C.X., Ekaputra, A.K., Wong, S.Y., Li, X., Gibson, I.: Biomimetic composite coating on rapid prototyped scaffolds for bonetissue engineering. Acta Biomater. 7, 809–820 (2011)CrossRef Arafat, M.T., Lam, C.X., Ekaputra, A.K., Wong, S.Y., Li, X., Gibson, I.: Biomimetic composite coating on rapid prototyped scaffolds for bonetissue engineering. Acta Biomater. 7, 809–820 (2011)CrossRef
40.
go back to reference Domingos, M., Dinucci, D., Cometa, S., Alderighi, M., Bartolo, P.J., Chiellini, F.: Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int. J. Biomater. 2009, 1–9 (2009)CrossRef Domingos, M., Dinucci, D., Cometa, S., Alderighi, M., Bartolo, P.J., Chiellini, F.: Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications. Int. J. Biomater. 2009, 1–9 (2009)CrossRef
41.
go back to reference Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J.A., Trombetta, M.: Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2, 1–11 (2010)CrossRef Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J.A., Trombetta, M.: Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2, 1–11 (2010)CrossRef
42.
go back to reference Owida, A., Chen, R., Patel, S., Morsi, Y., Mo, X.: Artery vessel fabrication using the combined fused deposition modeling and electrospinning techniques. Rapid Prototyping J. 17, 37–44 (2011)CrossRef Owida, A., Chen, R., Patel, S., Morsi, Y., Mo, X.: Artery vessel fabrication using the combined fused deposition modeling and electrospinning techniques. Rapid Prototyping J. 17, 37–44 (2011)CrossRef
43.
go back to reference Kim, G.H., Son, J.G., Park, S., Kim, W.D.: Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun. 29, 1577–1581 (2008)CrossRef Kim, G.H., Son, J.G., Park, S., Kim, W.D.: Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun. 29, 1577–1581 (2008)CrossRef
44.
go back to reference Lee, H., Yeo, M., Ahn, S.H., Kang, D.O., Jang, C.H., Lee, H., Park, G.M., Kim, G.H.: Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J. Biomed. Mater. Res. Part B: Appl. Biomater. 97B, 263–270 (2011)CrossRef Lee, H., Yeo, M., Ahn, S.H., Kang, D.O., Jang, C.H., Lee, H., Park, G.M., Kim, G.H.: Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J. Biomed. Mater. Res. Part B: Appl. Biomater. 97B, 263–270 (2011)CrossRef
45.
go back to reference Moroni, L., Schotel, R., Hamann, D., de Wijn, J.R., van Blitterswijk, C.A.: 3D fiber deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18, 53–63 (2008)CrossRef Moroni, L., Schotel, R., Hamann, D., de Wijn, J.R., van Blitterswijk, C.A.: 3D fiber deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18, 53–63 (2008)CrossRef
46.
go back to reference Lim, T.C., Bang, C.P., Chian, K.S., Leong, K.F.: Development of cryogenic prototyping for tissue engineering. Virtual Phys Prototyping 3, 25–31 (2008)CrossRef Lim, T.C., Bang, C.P., Chian, K.S., Leong, K.F.: Development of cryogenic prototyping for tissue engineering. Virtual Phys Prototyping 3, 25–31 (2008)CrossRef
47.
go back to reference Pham, C.B., Leong, K.F., Lim, T.C., Chian, K.S.: Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyping J. 14, 246–253 (2008)CrossRef Pham, C.B., Leong, K.F., Lim, T.C., Chian, K.S.: Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyping J. 14, 246–253 (2008)CrossRef
48.
go back to reference Lu, L., Zhang, Q., Wootton, D., Lelkes, P.I., Zhou, J.: A novel sucrose porogen-base d solid freeform fabrication system for bone scaffold manufacturing. Rapid Prototyping J. 16, 365–367 (2010)CrossRef Lu, L., Zhang, Q., Wootton, D., Lelkes, P.I., Zhou, J.: A novel sucrose porogen-base d solid freeform fabrication system for bone scaffold manufacturing. Rapid Prototyping J. 16, 365–367 (2010)CrossRef
49.
go back to reference Heo, S.J., Kim, S.E., Wei, J., Hyun, Y.T., Yun, H.S., Kim, D.H., Shin, J.W., Shin, J.-W.: Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. J. Biomed. Mater. Res. Part A 89A, 108–116 (2009) Heo, S.J., Kim, S.E., Wei, J., Hyun, Y.T., Yun, H.S., Kim, D.H., Shin, J.W., Shin, J.-W.: Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. J. Biomed. Mater. Res. Part A 89A, 108–116 (2009)
50.
go back to reference Salgado, A.J., Coutinho, O.P., Reis, R.L.: Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4, 743–765 (2004)CrossRef Salgado, A.J., Coutinho, O.P., Reis, R.L.: Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4, 743–765 (2004)CrossRef
51.
go back to reference Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31, 850–856 (2010)CrossRef Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31, 850–856 (2010)CrossRef
52.
go back to reference Woesz, A.: Rapid prototyping to produce porous scaffolds with controlled architecture for possible use in bone tissue engineering. In: Bidanda, B., Bártolo, P.J. (eds.) Virtual Prototyping and Bio Manufacturing in Medical Applications. Springer, US (2008) Woesz, A.: Rapid prototyping to produce porous scaffolds with controlled architecture for possible use in bone tissue engineering. In: Bidanda, B., Bártolo, P.J. (eds.) Virtual Prototyping and Bio Manufacturing in Medical Applications. Springer, US (2008)
53.
go back to reference Detsch, R., Schaefer, S., Deisinger, U., Ziegler, G., Seitz, H., Leukers, B.: In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 00, 1–22 (2010) Detsch, R., Schaefer, S., Deisinger, U., Ziegler, G., Seitz, H., Leukers, B.: In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl. 00, 1–22 (2010)
54.
go back to reference Shanjani, Y., De Croos, J.N., Pilliar, R.M., Kandel, R.A., Toyserkani, E.: Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 510–519 (2010)CrossRef Shanjani, Y., De Croos, J.N., Pilliar, R.M., Kandel, R.A., Toyserkani, E.: Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 510–519 (2010)CrossRef
55.
go back to reference Klammert, U., Vorndran, E., Reuther, T., Müller, F.A., Zorn, K., Gbureck, U.: Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21, 2947–2953 (2010)CrossRef Klammert, U., Vorndran, E., Reuther, T., Müller, F.A., Zorn, K., Gbureck, U.: Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21, 2947–2953 (2010)CrossRef
56.
go back to reference Ge, Z., Wang, L., Heng, B.C., Tian, X.F., Lu, K., Fan, V.T., Yeo, J.F., Cao, T., Tan, E.: Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J. Biomater. Appl. 23, 533–547 (2009)CrossRef Ge, Z., Wang, L., Heng, B.C., Tian, X.F., Lu, K., Fan, V.T., Yeo, J.F., Cao, T., Tan, E.: Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J. Biomater. Appl. 23, 533–547 (2009)CrossRef
57.
go back to reference Warnke, P.H., Seitz, H., Warnke, F., Becker, S.T., Sivananthan, S., Sherry, E., Liu, Q., Wiltfang, J., Douglas, T.: Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 212–217 (2010) Warnke, P.H., Seitz, H., Warnke, F., Becker, S.T., Sivananthan, S., Sherry, E., Liu, Q., Wiltfang, J., Douglas, T.: Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J. Biomed. Mater. Res. Part B: Appl. Biomater. 93B, 212–217 (2010)
58.
go back to reference Becker, S.T., Bolte, H., Krapf, O., Seitz, H., Douglas, T., Sivananthan, S., Wiltfang, J., Sherry, E., Warnke, P.H.: Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol. 45, e181–e188 (2009)CrossRef Becker, S.T., Bolte, H., Krapf, O., Seitz, H., Douglas, T., Sivananthan, S., Wiltfang, J., Sherry, E., Warnke, P.H.: Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol. 45, e181–e188 (2009)CrossRef
59.
go back to reference Klammert, U., Reuther, T., Jahn, C., Kraski, B., Kübler, A.C., Gbureck, U.: Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 5, 727–734 (2009)CrossRef Klammert, U., Reuther, T., Jahn, C., Kraski, B., Kübler, A.C., Gbureck, U.: Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 5, 727–734 (2009)CrossRef
60.
go back to reference Lowmunkong, R., Sohmura, T., Suzuki, Y., Matsuya, S., Ishikawa, K.: Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method. J. Biomed. Mater. Res. Part B: Appl. Biomater. 90B, 531–539 (2009)CrossRef Lowmunkong, R., Sohmura, T., Suzuki, Y., Matsuya, S., Ishikawa, K.: Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method. J. Biomed. Mater. Res. Part B: Appl. Biomater. 90B, 531–539 (2009)CrossRef
61.
go back to reference Gbureck, U., Hölzel, T., Biermann, I., Barralet, J.E., Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci. Mater. Med. 19, 1559–1563 (2008)CrossRef Gbureck, U., Hölzel, T., Biermann, I., Barralet, J.E., Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J. Mater. Sci. Mater. Med. 19, 1559–1563 (2008)CrossRef
62.
go back to reference Wiria, F.E., Shyan, J.Y., Lim, P.N., Wen, F.G., Yeo, J.F., Cao, T.: Printing of titanium implant prototype. Mater. Des. 31, S101–S105 (2010)CrossRef Wiria, F.E., Shyan, J.Y., Lim, P.N., Wen, F.G., Yeo, J.F., Cao, T.: Printing of titanium implant prototype. Mater. Des. 31, S101–S105 (2010)CrossRef
63.
go back to reference Bártolo, P.J., Chua, C.K., Almeida, H.A., Chou, S.M., Lim, A.S.: Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyping 4, 203–216 (2009)CrossRef Bártolo, P.J., Chua, C.K., Almeida, H.A., Chou, S.M., Lim, A.S.: Biomanufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyping 4, 203–216 (2009)CrossRef
64.
go back to reference Park, C.H., Rios, H.F., Jin, Q., Bland, M.E., Flanagan, C.L., Hollister, S.J., Giannobile, W.V.: Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31, 5945–5952 (2010)CrossRef Park, C.H., Rios, H.F., Jin, Q., Bland, M.E., Flanagan, C.L., Hollister, S.J., Giannobile, W.V.: Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31, 5945–5952 (2010)CrossRef
65.
go back to reference Safari, A., Danforth, S.C., Allahverdi, M., Venkataraman, N.: Rapid Prototyping. In: Buschow, K.H., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, 2nd edn. Elsevier, Oxford (2001) Safari, A., Danforth, S.C., Allahverdi, M., Venkataraman, N.: Rapid Prototyping. In: Buschow, K.H., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, 2nd edn. Elsevier, Oxford (2001)
66.
go back to reference Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T.: Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 7, 530–537 (2011)CrossRef Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T.: Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 7, 530–537 (2011)CrossRef
67.
go back to reference Yeong, W.Y., Sudarmadji, N., Yu, H.Y., Chua, C.K., Leong, K.F., Venkatraman, S.S., Boey, Y.C., Tan, L.P.: Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6, 2028–2034 (2010)CrossRef Yeong, W.Y., Sudarmadji, N., Yu, H.Y., Chua, C.K., Leong, K.F., Venkatraman, S.S., Boey, Y.C., Tan, L.P.: Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6, 2028–2034 (2010)CrossRef
68.
go back to reference Eshraghi, S., Das, S.: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6, 2467–2476 (2010)CrossRef Eshraghi, S., Das, S.: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6, 2467–2476 (2010)CrossRef
69.
go back to reference Lohfeld, S., Tyndyk, M.A., Cahill, S., Flaherty, N., Barron, V., McHugh, P.E.: A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 3, 138–147 (2010)CrossRef Lohfeld, S., Tyndyk, M.A., Cahill, S., Flaherty, N., Barron, V., McHugh, P.E.: A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 3, 138–147 (2010)CrossRef
70.
go back to reference Eosoly, S., Brabazon, D., Lohfeld, S., Looney, L.: Selective laser sintering of hydroxyapatite/poly-ε- caprolactone scaffolds. Acta Biomater. 6, 2511–2517 (2010)CrossRef Eosoly, S., Brabazon, D., Lohfeld, S., Looney, L.: Selective laser sintering of hydroxyapatite/poly-ε- caprolactone scaffolds. Acta Biomater. 6, 2511–2517 (2010)CrossRef
71.
go back to reference Salmoria, G.V., Klauss, P., Paggi, R.A., Kanis, L.A., Lago, A.: Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym. Test. 28, 648–652 (2009)CrossRef Salmoria, G.V., Klauss, P., Paggi, R.A., Kanis, L.A., Lago, A.: Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym. Test. 28, 648–652 (2009)CrossRef
72.
go back to reference Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L.: Synthesis of Ca–P nanoparticles and fabrication of Ca–P/PHBV nanocomposite microspheres for bone tissue engineering applications. Appl. Surf. Sci. 255, 529–533 (2008)CrossRef Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L.: Synthesis of Ca–P nanoparticles and fabrication of Ca–P/PHBV nanocomposite microspheres for bone tissue engineering applications. Appl. Surf. Sci. 255, 529–533 (2008)CrossRef
73.
go back to reference Duan, B., Wang, M.: Customized Ca – P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7, S615–S629 (2010)CrossRef Duan, B., Wang, M.: Customized Ca – P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7, S615–S629 (2010)CrossRef
74.
go back to reference Duan, B., Wang, M.: Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polym. Degrad. Stab. 95, 1655–1664 (2010)CrossRef Duan, B., Wang, M.: Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering. Polym. Degrad. Stab. 95, 1655–1664 (2010)CrossRef
75.
go back to reference Duan, B., Wang, M., Li, Z.Y., Lu, W.W.: Bone morphogenetic protein incorporated nanocomposite scaffolds and induction of osteogenic differentiation of mesenchymal stem cells. In: Proceedings of the Tissue Engineering and Regenerative Medicine International Society—EU Meeting, Galway, Ireland Duan, B., Wang, M., Li, Z.Y., Lu, W.W.: Bone morphogenetic protein incorporated nanocomposite scaffolds and induction of osteogenic differentiation of mesenchymal stem cells. In: Proceedings of the Tissue Engineering and Regenerative Medicine International Society—EU Meeting, Galway, Ireland
76.
go back to reference Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Li, Z.Y., Lu, W.W.: Three dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6, 4495–4505 (2010)CrossRef Duan, B., Wang, M., Zhou, W.Y., Cheung, W.L., Li, Z.Y., Lu, W.W.: Three dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6, 4495–4505 (2010)CrossRef
77.
go back to reference Duan, B., Cheung, W.L., Wang, M.: Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3, 015001–015013 (2011)CrossRef Duan, B., Cheung, W.L., Wang, M.: Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3, 015001–015013 (2011)CrossRef
78.
go back to reference Duan, B., Wang, M., Li, Z.Y., Chan, W.C., Lu, W.W.: Sur face modi fi cation of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatine and its in vitro biological evaluation. Front. Mater. Sci. 5, 57–68 (2011)CrossRef Duan, B., Wang, M., Li, Z.Y., Chan, W.C., Lu, W.W.: Sur face modi fi cation of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatine and its in vitro biological evaluation. Front. Mater. Sci. 5, 57–68 (2011)CrossRef
79.
go back to reference Zhou, W.Y., Lee, S.H., Wang, M., Cheung, W.L., Ip, W.Y.: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci. Mater. Med. 19, 2535–2540 (2008)CrossRef Zhou, W.Y., Lee, S.H., Wang, M., Cheung, W.L., Ip, W.Y.: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci. Mater. Med. 19, 2535–2540 (2008)CrossRef
80.
go back to reference Liu-lan, L., Ying-ying, S., Jia-feng, Z., Ming-lun, F.: Microstructure and mechanical properties analysis of β-tricalcium phosphate/carbon nanotubes scaffold based on rapid prototyping. J. Shanghai Univ.(Engl. Ed.) 13, 349–351 (2009)CrossRef Liu-lan, L., Ying-ying, S., Jia-feng, Z., Ming-lun, F.: Microstructure and mechanical properties analysis of β-tricalcium phosphate/carbon nanotubes scaffold based on rapid prototyping. J. Shanghai Univ.(Engl. Ed.) 13, 349–351 (2009)CrossRef
81.
go back to reference Bibb, R.: Medical Modelling: The Application of Advanced Design and Development Techniques in Medicine. Woodhead Publishing Limited, Cambridge, England (2006) Bibb, R.: Medical Modelling: The Application of Advanced Design and Development Techniques in Medicine. Woodhead Publishing Limited, Cambridge, England (2006)
82.
go back to reference Seck, T.M., Melchels, F.P., Feijen, J., Grijpma, D.W.: Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D, L -lactide)-based resins. J. Controlled Release 148, 34–41 (2010)CrossRef Seck, T.M., Melchels, F.P., Feijen, J., Grijpma, D.W.: Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D, L -lactide)-based resins. J. Controlled Release 148, 34–41 (2010)CrossRef
83.
go back to reference Melchels, F.P., Bertoldi, K., Gabbrielli, R., Velders, A.H., Feijen, J., Grijpma, D.W.: Mathematically defined tissue engineering scaffold architectures prepared by stereolitho- graphy. Biomaterials 31, 6909–6916 (2010)CrossRef Melchels, F.P., Bertoldi, K., Gabbrielli, R., Velders, A.H., Feijen, J., Grijpma, D.W.: Mathematically defined tissue engineering scaffold architectures prepared by stereolitho- graphy. Biomaterials 31, 6909–6916 (2010)CrossRef
84.
go back to reference Melchels, F.P., Barradas, A.M., Van Blitterswijk, C.A., de Boer, J., Feijen, J., Grijpma, D.W.: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6, 4208–4217 (2010)CrossRef Melchels, F.P., Barradas, A.M., Van Blitterswijk, C.A., de Boer, J., Feijen, J., Grijpma, D.W.: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6, 4208–4217 (2010)CrossRef
85.
go back to reference Melchels, F.P., Feijen, J., Grijpma, D.W.: A poly(D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30, 3801–3809 (2009)CrossRef Melchels, F.P., Feijen, J., Grijpma, D.W.: A poly(D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30, 3801–3809 (2009)CrossRef
86.
go back to reference Arcaute, K., Mann, B., Wicker, R.: Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6, 1047–1054 (2010)CrossRef Arcaute, K., Mann, B., Wicker, R.: Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6, 1047–1054 (2010)CrossRef
87.
go back to reference Lee, J.W., Ahn, G., Kim, J.Y., Cho, D.-W.: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J. Mater. Sci. Mater. Med. 21, 3195–3205 (2010)CrossRef Lee, J.W., Ahn, G., Kim, J.Y., Cho, D.-W.: Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J. Mater. Sci. Mater. Med. 21, 3195–3205 (2010)CrossRef
88.
go back to reference Lee, J.W., Jung, J.H., Kim, D.S., Lim, G., Cho, D.-W.: Estimation of cell proliferation by various peptide coating at the PPF/DEF 3D scaffold. Microelectron. Eng. 86, 1451–1454 (2009)CrossRef Lee, J.W., Jung, J.H., Kim, D.S., Lim, G., Cho, D.-W.: Estimation of cell proliferation by various peptide coating at the PPF/DEF 3D scaffold. Microelectron. Eng. 86, 1451–1454 (2009)CrossRef
89.
go back to reference Lee, J.W., Lan, P.X., Kim, B., Lim, G., Cho, D.-W.: Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J. Biomed. Mater. Res. Part B: Appl. Biomater. 87B, 1–9 (2008)CrossRef Lee, J.W., Lan, P.X., Kim, B., Lim, G., Cho, D.-W.: Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J. Biomed. Mater. Res. Part B: Appl. Biomater. 87B, 1–9 (2008)CrossRef
90.
go back to reference Lee, J.W., Ahn, G., Kim, D.S., Cho, D.-W.: Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron. Eng. 86, 1465–1467 (2009)CrossRef Lee, J.W., Ahn, G., Kim, D.S., Cho, D.-W.: Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron. Eng. 86, 1465–1467 (2009)CrossRef
91.
go back to reference Choi, J.W., Wicker, R., Lee, S.-H., Choi, K.-H., Ha, C.-S., Chung, I.: Fabrication of 3D biocompatible/biodegradable micro-scaf folds using dynamic mask projection microstereolithography. J. Mater. Process. Technol. 209, 5494–5503 (2009)CrossRef Choi, J.W., Wicker, R., Lee, S.-H., Choi, K.-H., Ha, C.-S., Chung, I.: Fabrication of 3D biocompatible/biodegradable micro-scaf folds using dynamic mask projection microstereolithography. J. Mater. Process. Technol. 209, 5494–5503 (2009)CrossRef
92.
go back to reference Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B.: Microstructure and mechanical behavior of Ti–6Al–4 V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behavior Biomed. Mater. 2, 20–32 (2009)CrossRef Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B.: Microstructure and mechanical behavior of Ti–6Al–4 V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behavior Biomed. Mater. 2, 20–32 (2009)CrossRef
93.
go back to reference Dinda, G.P., Song, L., Mazumder, J.: Fabrication of Ti-6Al-4 V scaffolds by direct metal deposition. Metall. Mater. Trans. A 39A, 2914–2922 (2008)CrossRef Dinda, G.P., Song, L., Mazumder, J.: Fabrication of Ti-6Al-4 V scaffolds by direct metal deposition. Metall. Mater. Trans. A 39A, 2914–2922 (2008)CrossRef
94.
go back to reference Li, X., Wang, C., Zhang, W., Li, Y.: Fabrication and compressive properties of Ti6Al4 V implant with honeycomb-like structure for biomedical applications. Rapid Prototyping J. 16, 44–49 (2010)CrossRef Li, X., Wang, C., Zhang, W., Li, Y.: Fabrication and compressive properties of Ti6Al4 V implant with honeycomb-like structure for biomedical applications. Rapid Prototyping J. 16, 44–49 (2010)CrossRef
95.
go back to reference Li, X., Wang, C., Zhang, W., Li, Y.: Properties of a porous Ti–6Al–4 V implant with a low stiffness for biomedical application. Proc. IMechE Part H: J. Engineering in Medicine 223, 173–178 (2009)CrossRef Li, X., Wang, C., Zhang, W., Li, Y.: Properties of a porous Ti–6Al–4 V implant with a low stiffness for biomedical application. Proc. IMechE Part H: J. Engineering in Medicine 223, 173–178 (2009)CrossRef
96.
go back to reference Li, X., Wang, C., Zhang, W., Li, Y.: Fabrication and characterization of porous Ti6Al4 V parts for biomedical applications using electron beam melting process. Mater. Lett. 63, 403–405 (2009)CrossRef Li, X., Wang, C., Zhang, W., Li, Y.: Fabrication and characterization of porous Ti6Al4 V parts for biomedical applications using electron beam melting process. Mater. Lett. 63, 403–405 (2009)CrossRef
97.
go back to reference Parthasarathy, J., Starly, B., Raman, S., Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4 V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3, 249–259 (2010)CrossRef Parthasarathy, J., Starly, B., Raman, S., Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4 V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3, 249–259 (2010)CrossRef
98.
go back to reference Parthasarathy, J., Starly, B., Raman, S.: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manufact. Process. 13, 160–170 (2011)CrossRef Parthasarathy, J., Starly, B., Raman, S.: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manufact. Process. 13, 160–170 (2011)CrossRef
99.
go back to reference Heinl, P., Muüller, L., Koürner, C., Singer, R.F., Muüller, F.A.: Cellular Ti–6Al–4 V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008)CrossRef Heinl, P., Muüller, L., Koürner, C., Singer, R.F., Muüller, F.A.: Cellular Ti–6Al–4 V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008)CrossRef
100.
go back to reference Haslauer, C.M., Springer, J.C., Harrysson, O.L., Loboa, E.G., Monteiro-Riviere, N.A., Marcellin-Little, D.J.: In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Med. Eng. Phys. 32, 645–652 (2010)CrossRef Haslauer, C.M., Springer, J.C., Harrysson, O.L., Loboa, E.G., Monteiro-Riviere, N.A., Marcellin-Little, D.J.: In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Med. Eng. Phys. 32, 645–652 (2010)CrossRef
101.
go back to reference Ponader, S., Von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., Körner, C., Singer, R.F., Nkenke, E., Neukam, F.W., Schlegel, K.A.: In vivo performance of selective electron beam-melted Ti-6Al-4 V structures. J. Biomed. Mater. Res., Part A 92A, 56–62 (2010)CrossRef Ponader, S., Von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., Körner, C., Singer, R.F., Nkenke, E., Neukam, F.W., Schlegel, K.A.: In vivo performance of selective electron beam-melted Ti-6Al-4 V structures. J. Biomed. Mater. Res., Part A 92A, 56–62 (2010)CrossRef
102.
go back to reference Harrysson, O.L., Cansizoglu, O., Marcellin-Little, D.J., Cormier, D.R., West, H.A.: Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater. Sci. Eng., C 28, 366–373 (2008)CrossRef Harrysson, O.L., Cansizoglu, O., Marcellin-Little, D.J., Cormier, D.R., West, H.A.: Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater. Sci. Eng., C 28, 366–373 (2008)CrossRef
103.
go back to reference Lindner, M., Hoeges, S., Meiners, W., Wissenbach, K., Smeets, R., Telle, R., Poprawe, R., Fischer, H.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. J. Biomed. Mater. Res., Part A 97A, 466–471 (2011)CrossRef Lindner, M., Hoeges, S., Meiners, W., Wissenbach, K., Smeets, R., Telle, R., Poprawe, R., Fischer, H.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. J. Biomed. Mater. Res., Part A 97A, 466–471 (2011)CrossRef
104.
go back to reference Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., Huang, W.: Development of highly porous titanium scaffolds by selective laser melting. Mater. Lett. 64, 674–676 (2010)CrossRef Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., Huang, W.: Development of highly porous titanium scaffolds by selective laser melting. Mater. Lett. 64, 674–676 (2010)CrossRef
105.
go back to reference Alvarez, K., Nakajima, H.: Metallic scaffolds for bone regeneration. Materials 2, 790–832 (2009)CrossRef Alvarez, K., Nakajima, H.: Metallic scaffolds for bone regeneration. Materials 2, 790–832 (2009)CrossRef
Metadata
Title
Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication
Authors
Osama A. M. Abdelaal
Saied M. H. Darwish
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31470-4_3

Premium Partners