Skip to main content
Top
Published in: Wireless Personal Communications 2/2018

02-05-2018

Review of Wireless Personal Communications Radio Propagation Models in High Altitude Mountainous Areas at 2.6 GHz

Authors: Huafu Li, Xianguo He, Wenxue He

Published in: Wireless Personal Communications | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents five commonly used radio propagation models (RPMs) which are suitable for the prediction of path loss in macrocell environments of LTE wireless communication systems. These RPMs’ application in high altitude mountainous areas networks (HAMANETs) environment requires further validation and studies. Through using the measured path loss in the HAMANETs at 2.6 GHz to calculate the predicted value of the five RPMs and the measured value’s mean error (ME), root mean square error, and error standard deviation (ESTD), we verified the predicted value of the SPM model that is closer to the actual measurement. On this basis, the empirical propagation model in HAMANETs environment is corrected. When correcting, a method to calculate base station’s effective antenna height and propagation distance is provided by using the altitude above sea level data. This method can reduce the error that the mountainous areas are simplified to the flat-terrain in the existed propagation models. A linear least square method is used to calculate the optimal propagation model. Finally, the ME is the smallest, and the ESTD is less than 8 dB, which indicate that the corrected propagation model is more suitable for the actual environmental path loss’s prediction. The results show that the path loss factor of the test area is about 65 dB, including the influence of the high altitude, mountains, vegetation, and air humidity in HAMANETs environment. The study results can provide useful advice to the evaluation and verification of personal wireless communications in the HAMANETs. Furthermore, using the correction method proposed in this paper can correct propagation models suitable for the different propagation environments to improve the accuracy and efficiency of wireless network optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nkordeh, N. S., Atayero, A. A., Idachaba, F. E., & Oni, O. O. (2014). Lte network planning using the hata-okumura and the cost-231 hata pathloss models. Lecture Notes in Engineering and Computer Science, 2211(1), 705–709. Nkordeh, N. S., Atayero, A. A., Idachaba, F. E., & Oni, O. O. (2014). Lte network planning using the hata-okumura and the cost-231 hata pathloss models. Lecture Notes in Engineering and Computer Science, 2211(1), 705–709.
2.
go back to reference Castro-Hernandez, D., & Paranjape, R. (2016). Local tuning of a site-specific propagation path loss model for microcell environments. Wireless Personal Communications, 91(2), 709–728.CrossRef Castro-Hernandez, D., & Paranjape, R. (2016). Local tuning of a site-specific propagation path loss model for microcell environments. Wireless Personal Communications, 91(2), 709–728.CrossRef
3.
go back to reference Deme, A., Dajab, D., & Nyap, D. C. (2013). Computer analysis of the cost 231 hata model and least squares approximation for path loss estimation at 900 Mhz on the mountain terrains of the Jos-plateau, Nigeria. Computer Engineering & Intelligent Systems, 4(9), 39–48. Deme, A., Dajab, D., & Nyap, D. C. (2013). Computer analysis of the cost 231 hata model and least squares approximation for path loss estimation at 900 Mhz on the mountain terrains of the Jos-plateau, Nigeria. Computer Engineering & Intelligent Systems, 4(9), 39–48.
4.
go back to reference Mollel, M. S., & Kisangiri, M. (2014). Comparison of empirical propagation path loss models for mobile communication. Computer Engineering and Intelligent Systems, 5(9), 1–10. Mollel, M. S., & Kisangiri, M. (2014). Comparison of empirical propagation path loss models for mobile communication. Computer Engineering and Intelligent Systems, 5(9), 1–10.
5.
go back to reference Al-Samman, A. M., Rahman, T. A., Azmi, M. H., & Hindia, M. N. (2016). Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications. AEU—International Journal of Electronics and Communications, 70(11), 1515–1521.CrossRef Al-Samman, A. M., Rahman, T. A., Azmi, M. H., & Hindia, M. N. (2016). Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications. AEU—International Journal of Electronics and Communications, 70(11), 1515–1521.CrossRef
6.
go back to reference Suneetha Rani, M., Behara, S., & Suresh, K. (2012). Comparison of standard propagation model (spm) and Stanford university interim (sui) radio propagation models for long term evolution (lte). IJAIR, 6(5), 221–228. Suneetha Rani, M., Behara, S., & Suresh, K. (2012). Comparison of standard propagation model (spm) and Stanford university interim (sui) radio propagation models for long term evolution (lte). IJAIR, 6(5), 221–228.
7.
go back to reference Okumura, Y., Ohmori, E., Kawano, T., & Fukuda, K. (1968). Fieldstrength and its variability in VHF and UHF land mobile radio service. Review of the Electrical Communications Laboratories, 16(9–10), 825. Okumura, Y., Ohmori, E., Kawano, T., & Fukuda, K. (1968). Fieldstrength and its variability in VHF and UHF land mobile radio service. Review of the Electrical Communications Laboratories, 16(9–10), 825.
8.
go back to reference Phaiboon, S., Phokharatkul, P., & Somkuarnpanit, S. (2008). New upper and lower bounds line of sight path loss model for mobile propagation in buildings. AEU—International Journal of Electronics and Communications, 62(3), 207–215.CrossRef Phaiboon, S., Phokharatkul, P., & Somkuarnpanit, S. (2008). New upper and lower bounds line of sight path loss model for mobile propagation in buildings. AEU—International Journal of Electronics and Communications, 62(3), 207–215.CrossRef
9.
go back to reference Nisirat, M. A., AlKhawaldeh, S., Ismail, M., & Nissirat, L. (2012). Hata based propagation loss formula using terrain criterion for 1800 MHz. AEU—International Journal of Electronics and Communications, 66(10), 855–859.CrossRef Nisirat, M. A., AlKhawaldeh, S., Ismail, M., & Nissirat, L. (2012). Hata based propagation loss formula using terrain criterion for 1800 MHz. AEU—International Journal of Electronics and Communications, 66(10), 855–859.CrossRef
10.
go back to reference Fernandes, L. C., & Soares, A. J. M. (2014). Path loss prediction in microcellular environments at 900 MHz. AEU—International Journal of Electronics and Communications, 68(10), 983–989.CrossRef Fernandes, L. C., & Soares, A. J. M. (2014). Path loss prediction in microcellular environments at 900 MHz. AEU—International Journal of Electronics and Communications, 68(10), 983–989.CrossRef
11.
go back to reference Azevedo, J. A., & Santos, F. E. (2017). A model to estimate the path loss in areas with foliage of trees. AEU—International Journal of Electronics and Communications, 71, 157–161.CrossRef Azevedo, J. A., & Santos, F. E. (2017). A model to estimate the path loss in areas with foliage of trees. AEU—International Journal of Electronics and Communications, 71, 157–161.CrossRef
12.
go back to reference Kurnaz, O., & Helhel, S. (2014). Near ground propagation model for pine tree forest environment. AEU—International Journal of Electronics and Communications, 68(10), 944–950.CrossRef Kurnaz, O., & Helhel, S. (2014). Near ground propagation model for pine tree forest environment. AEU—International Journal of Electronics and Communications, 68(10), 944–950.CrossRef
13.
go back to reference Sotiroudis, S. P., & Siakavara, K. (2015). Mobile radio propagation path loss prediction using artificial neural networks with optimal input information for urban environments. AEU—International Journal of Electronics and Communications, 69(10), 1453–1463.CrossRef Sotiroudis, S. P., & Siakavara, K. (2015). Mobile radio propagation path loss prediction using artificial neural networks with optimal input information for urban environments. AEU—International Journal of Electronics and Communications, 69(10), 1453–1463.CrossRef
14.
go back to reference Ayadi, M., Zineb, A. B., & Tabbane, S. (2017). A uhf path loss model using learning machine for heterogeneous networks. IEEE Transactions on Antennas & Propagation, 42(99), 3263–3274.MathSciNet Ayadi, M., Zineb, A. B., & Tabbane, S. (2017). A uhf path loss model using learning machine for heterogeneous networks. IEEE Transactions on Antennas & Propagation, 42(99), 3263–3274.MathSciNet
15.
go back to reference Hata, M. (1980). Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, 29(3), 317–325.CrossRef Hata, M. (1980). Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, 29(3), 317–325.CrossRef
16.
go back to reference Medeisis, A., & Kajackas, A. (2000). On the use of the universal Okumura-Hata propagation prediction model in rural areas. In 2000 IEEE 51st vehicular technology conference proceedings, VTC 2000-spring Tokyo, IEEE, Vol. 3, pp. 1815–1818. Medeisis, A., & Kajackas, A. (2000). On the use of the universal Okumura-Hata propagation prediction model in rural areas. In 2000 IEEE 51st vehicular technology conference proceedings, VTC 2000-spring Tokyo, IEEE, Vol. 3, pp. 1815–1818.
17.
go back to reference Cota, N., Serrador, A., Vieira, P., Beire, A. R., & Rodrigues, A. (2013). On the use of Okumura-Hata propagation model on railway communications. In 2013 16th international symposium on wireless personal multimedia communications (WPMC), IEEE, Vol. 3, pp. 1–5. Cota, N., Serrador, A., Vieira, P., Beire, A. R., & Rodrigues, A. (2013). On the use of Okumura-Hata propagation model on railway communications. In 2013 16th international symposium on wireless personal multimedia communications (WPMC), IEEE, Vol. 3, pp. 1–5.
18.
go back to reference Shahajahan, M., & Abdulla, A. Q. M. (2009). Analysis of propagation models for wimax at 3.5 Ghz. Blekinge Institute of Technology, 2009, 1–10. Shahajahan, M., & Abdulla, A. Q. M. (2009). Analysis of propagation models for wimax at 3.5 Ghz. Blekinge Institute of Technology, 2009, 1–10.
19.
go back to reference Sharma, P. K., & Singh, R. K. (2010). Comparative analysis of propagation path loss models with field measured data. International Journal of Engineering, Science and Technology, 2(6), 2008–2013. Sharma, P. K., & Singh, R. K. (2010). Comparative analysis of propagation path loss models with field measured data. International Journal of Engineering, Science and Technology, 2(6), 2008–2013.
20.
go back to reference Erceg, V., Greenstein, L. J., Tjandra, S. Y., Parkoff, S. R., Gupta, A., Kulic, B., et al. (1999). An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 17(7), 1205–1211.CrossRef Erceg, V., Greenstein, L. J., Tjandra, S. Y., Parkoff, S. R., Gupta, A., Kulic, B., et al. (1999). An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 17(7), 1205–1211.CrossRef
21.
go back to reference Alqudah, Y. A. (2013). Path loss modeling based on field measurements using deployed 3.5 Ghz wimax network. Wireless Personal Communications, 69(2), 793–803.CrossRef Alqudah, Y. A. (2013). Path loss modeling based on field measurements using deployed 3.5 Ghz wimax network. Wireless Personal Communications, 69(2), 793–803.CrossRef
22.
go back to reference Zeng, H., & Zhu, C. (2008). System-level modeling and performance evaluation of multi-hop 802.16 j systems. In International wireless communications and mobile computing conference 2008, IWCMC’08, IEEE, pp. 354–359. Zeng, H., & Zhu, C. (2008). System-level modeling and performance evaluation of multi-hop 802.16 j systems. In International wireless communications and mobile computing conference 2008, IWCMC’08, IEEE, pp. 354–359.
23.
go back to reference Parzy, M., & Bogucka, H. (2012). Policies and technology constraints for auctions in tv white spaces—A practical approach for LTE-A. In 2012 international symposium on wireless communication systems (ISWCS), IEEE, pp. 1024–1028. Parzy, M., & Bogucka, H. (2012). Policies and technology constraints for auctions in tv white spaces—A practical approach for LTE-A. In 2012 international symposium on wireless communication systems (ISWCS), IEEE, pp. 1024–1028.
24.
go back to reference Dalela, C., Prasad, M. V. S. N., & Dalela, P. K. (2012). Tuning of cost-231 hata model for radio wave propagation predictions. Computer Science and Information Technology, 10, 255–267. Dalela, C., Prasad, M. V. S. N., & Dalela, P. K. (2012). Tuning of cost-231 hata model for radio wave propagation predictions. Computer Science and Information Technology, 10, 255–267.
25.
go back to reference Sun, S., Rappaport, T. S., Thomas, T. A., Ghosh, A., Nguyen, H. C., Kovcs, I. Z., et al. (2016). Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 2843–2860.CrossRef Sun, S., Rappaport, T. S., Thomas, T. A., Ghosh, A., Nguyen, H. C., Kovcs, I. Z., et al. (2016). Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 2843–2860.CrossRef
26.
go back to reference Haneda, K., Zhang, J., Tan, L., Liu, G., Zheng, Y., Asplund, H., Li, J., Wang, Yi. Steer, D., & Li, C. (2016). 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments. In Vehicular technology conference, pp. 1–7. Haneda, K., Zhang, J., Tan, L., Liu, G., Zheng, Y., Asplund, H., Li, J., Wang, Yi. Steer, D., & Li, C. (2016). 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments. In Vehicular technology conference, pp. 1–7.
27.
go back to reference Yang, M., & Shi, W. (2008). A linear least square method of propagation model tuning for 3g radio network planning. In International conference on natural computation, pp. 150–154. Yang, M., & Shi, W. (2008). A linear least square method of propagation model tuning for 3g radio network planning. In International conference on natural computation, pp. 150–154.
Metadata
Title
Review of Wireless Personal Communications Radio Propagation Models in High Altitude Mountainous Areas at 2.6 GHz
Authors
Huafu Li
Xianguo He
Wenxue He
Publication date
02-05-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5713-6

Other articles of this Issue 2/2018

Wireless Personal Communications 2/2018 Go to the issue