Skip to main content
Top

2018 | OriginalPaper | Chapter

Review on Integration of Solar Air Heaters with Thermal Energy Storage

Authors : Prashant Saini, Dhiraj V. Patil, Satvasheel Powar

Published in: Applications of Solar Energy

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar radiation on the earth’s surface is abundant and truly a zero-carbon energy source. The solar energy needs to be harnessed using various efficient equipments, which has a very low carbon footprint. Various solar thermal energy harvesting techniques have been used which employ solar radiation incident on the optimal area with the help of concentrators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference WEC (2016) World energy resources. World Energy Council report, vol 1, p 468 WEC (2016) World energy resources. World Energy Council report, vol 1, p 468
2.
3.
go back to reference Hekkert MP, Hendriks FHJF, Faaij APC, Neelis ML (2005) Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 33(5):579–594CrossRef Hekkert MP, Hendriks FHJF, Faaij APC, Neelis ML (2005) Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 33(5):579–594CrossRef
4.
go back to reference Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234CrossRef Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234CrossRef
5.
go back to reference Umbach F (2010) Global energy security and the implications for the EU. Energy Policy 38(3):1229–1240CrossRef Umbach F (2010) Global energy security and the implications for the EU. Energy Policy 38(3):1229–1240CrossRef
7.
go back to reference Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187 Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187
8.
go back to reference Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242):1158–1162CrossRef Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242):1158–1162CrossRef
9.
go back to reference Young OR (2017) A. Society, I. Law, T. A. Journal, and I. Law, Review reviewed work (s): The collapse of the kyoto protocol and the struggle to slow global warming by David G. Victor. Am J Int Law 96(3) (Jul 2002):736–741 Young OR (2017) A. Society, I. Law, T. A. Journal, and I. Law, Review reviewed work (s): The collapse of the kyoto protocol and the struggle to slow global warming by David G. Victor. Am J Int Law 96(3) (Jul 2002):736–741
10.
go back to reference Harb A (2011) Energy harvesting: state-of-the-art. Renew. Energy 36(10):2641–2654CrossRef Harb A (2011) Energy harvesting: state-of-the-art. Renew. Energy 36(10):2641–2654CrossRef
11.
go back to reference Galik CS, Abt RC, Latta G, Meley A, Henderson JD (2016) Meeting renewable energy and land use objectives through public-private biomass supply partnerships. Appl Energy 172:264–274CrossRef Galik CS, Abt RC, Latta G, Meley A, Henderson JD (2016) Meeting renewable energy and land use objectives through public-private biomass supply partnerships. Appl Energy 172:264–274CrossRef
12.
go back to reference Sen Z (2008) Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy Sen Z (2008) Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy
13.
go back to reference Kalogirou SA, Karellas S, Braimakis K, Stanciu C, Badescu V (2016) Exergy analysis of solar thermal collectors and processes. Prog Energy Combust Sci 56:106–137CrossRef Kalogirou SA, Karellas S, Braimakis K, Stanciu C, Badescu V (2016) Exergy analysis of solar thermal collectors and processes. Prog Energy Combust Sci 56:106–137CrossRef
14.
go back to reference Karanasios K, Parker P (2016) Recent developments in renewable energy in remote aboriginal Karanasios K, Parker P (2016) Recent developments in renewable energy in remote aboriginal
15.
go back to reference (2016) Graph, See Government, The Ministry, The Pumps, Solar Ministry, The Energy, Renewable Ministry (2016) Graph, See Government, The Ministry, The Pumps, Solar Ministry, The Energy, Renewable Ministry
16.
go back to reference Meisen P, Quéneudec E (2006) Overview of renewable energy potential of India, October, pp 1–20 Meisen P, Quéneudec E (2006) Overview of renewable energy potential of India, October, pp 1–20
17.
go back to reference Bhawan SP, Marg S (2016–17) Annual report of contribution of different sectors to gross value added in 2015–16. Government of india, Ministry of statistics and programme implementation Bhawan SP, Marg S (2016–17) Annual report of contribution of different sectors to gross value added in 2015–16. Government of india, Ministry of statistics and programme implementation
18.
go back to reference Duffie JA, Beckman WA, McGowan J (1985) Solar engineering of thermal processes. Am J Phys 53(4):382CrossRef Duffie JA, Beckman WA, McGowan J (1985) Solar engineering of thermal processes. Am J Phys 53(4):382CrossRef
19.
go back to reference Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol Energy 4(3):1–19CrossRef Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol Energy 4(3):1–19CrossRef
20.
go back to reference Samimi A, Zarinabadi S, Samimi M (2012) Solar energy application on environmental protection, vol 1, no 8, pp 21–24 Samimi A, Zarinabadi S, Samimi M (2012) Solar energy application on environmental protection, vol 1, no 8, pp 21–24
21.
go back to reference Lodhi MAK (2004) Helio-hydro and helio-thermal production of hydrogen. Int J Hydrogen Energy 29(11):1099–1113 Lodhi MAK (2004) Helio-hydro and helio-thermal production of hydrogen. Int J Hydrogen Energy 29(11):1099–1113
22.
go back to reference Buchberg H, Catton I, Edwards DK (1976) Natural convection in enclosed spaces—a review of application to solar energy collection. J Heat Transf 98(2):182CrossRef Buchberg H, Catton I, Edwards DK (1976) Natural convection in enclosed spaces—a review of application to solar energy collection. J Heat Transf 98(2):182CrossRef
24.
go back to reference Singh PL, Sarviya RM, Bhagoria JL (2010) Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manag 51(2):329–337CrossRef Singh PL, Sarviya RM, Bhagoria JL (2010) Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manag 51(2):329–337CrossRef
25.
go back to reference Coventry JS (2005) Performance of a concentrating photovoltaic/thermal solar collector. Sol Energy 78(2):211–222CrossRef Coventry JS (2005) Performance of a concentrating photovoltaic/thermal solar collector. Sol Energy 78(2):211–222CrossRef
26.
go back to reference Sultana T, Morrison GL, Rosengarten G (2012) Thermal performance of a novel rooftop solar micro-concentrating collector. Sol Energy 86(7):1992–2000CrossRef Sultana T, Morrison GL, Rosengarten G (2012) Thermal performance of a novel rooftop solar micro-concentrating collector. Sol Energy 86(7):1992–2000CrossRef
27.
go back to reference Esen M (2000) Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Sol Energy 69(1):15–25CrossRef Esen M (2000) Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Sol Energy 69(1):15–25CrossRef
28.
go back to reference Hu E, Yang Y, Nishimura A, Yilmaz F, Kouzani A (2010) Solar thermal aided power generation. Appl Energy 87(9):2881–2885CrossRef Hu E, Yang Y, Nishimura A, Yilmaz F, Kouzani A (2010) Solar thermal aided power generation. Appl Energy 87(9):2881–2885CrossRef
29.
go back to reference Huang BJ, Ding WL, Huang YC (2011) Long-term field test of solar PV power generation using one-axis 3-position sun tracker. Sol Energy 85(9):1935–1944CrossRef Huang BJ, Ding WL, Huang YC (2011) Long-term field test of solar PV power generation using one-axis 3-position sun tracker. Sol Energy 85(9):1935–1944CrossRef
30.
go back to reference Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N (2006) Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 31(12):1839–1854CrossRef Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N (2006) Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 31(12):1839–1854CrossRef
31.
go back to reference Tiwari GN, Dimri V, Chel A (2009) Parametric study of an active and passive solar distillation system: energy and exergy analysis. Desalination 242(1–3):1–18CrossRef Tiwari GN, Dimri V, Chel A (2009) Parametric study of an active and passive solar distillation system: energy and exergy analysis. Desalination 242(1–3):1–18CrossRef
32.
go back to reference Khas H (1996) Pergamon PII: s0360-5442(%)ooo15-1, vol 21, no 9, pp 805–808 Khas H (1996) Pergamon PII: s0360-5442(%)ooo15-1, vol 21, no 9, pp 805–808
33.
go back to reference Kumar S, Tiwari GN, Singh HN (2000) Annual performance of an active solar distillation system. Desalination 127(1):79–88CrossRef Kumar S, Tiwari GN, Singh HN (2000) Annual performance of an active solar distillation system. Desalination 127(1):79–88CrossRef
34.
go back to reference Tiwari GN, Singh HN, Tripathi R (2003) Present status of solar distillation. Sol Energy 75(5):367–373CrossRef Tiwari GN, Singh HN, Tripathi R (2003) Present status of solar distillation. Sol Energy 75(5):367–373CrossRef
35.
go back to reference Aberle AG (2009) Thin-film solar cells. Thin Solid Films 517(17):4706–4710CrossRef Aberle AG (2009) Thin-film solar cells. Thin Solid Films 517(17):4706–4710CrossRef
36.
go back to reference Guha S, Yang J (1999) Science and technology of amorphous silicon alloy photovoltaics. IEEE Trans Electron Devices 46(10):2080–2085CrossRef Guha S, Yang J (1999) Science and technology of amorphous silicon alloy photovoltaics. IEEE Trans Electron Devices 46(10):2080–2085CrossRef
37.
go back to reference Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322CrossRef Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322CrossRef
38.
go back to reference Nandwani SS (1996) Solar cookers—cheap technology with high ecological benefits. Ecol Econ 17(2):73–81CrossRef Nandwani SS (1996) Solar cookers—cheap technology with high ecological benefits. Ecol Econ 17(2):73–81CrossRef
40.
go back to reference Sharma SD, Iwata T, Kitano H, Sagara K (2005) Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energy 78(3):416–426CrossRef Sharma SD, Iwata T, Kitano H, Sagara K (2005) Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Sol Energy 78(3):416–426CrossRef
41.
go back to reference Savin H et al (2015) Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol 10(7):624–628CrossRef Savin H et al (2015) Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nanotechnol 10(7):624–628CrossRef
42.
go back to reference Shah AV et al (2004) Thin-film silicon solar cell technology. Prog Photovolt Res Appl 12(23):113–142CrossRef Shah AV et al (2004) Thin-film silicon solar cell technology. Prog Photovolt Res Appl 12(23):113–142CrossRef
43.
go back to reference Shah AV, Platz R, Keppner H (1995) Thin-film silicon solar cells: a review and selected trends. Sol Energy Mater Sol Cells 38(1–4):501–520CrossRef Shah AV, Platz R, Keppner H (1995) Thin-film silicon solar cells: a review and selected trends. Sol Energy Mater Sol Cells 38(1–4):501–520CrossRef
44.
go back to reference Wenham SR, Green MA (1996) Silicon solar cells. Prog Photovolt 4(1):3–33 Wenham SR, Green MA (1996) Silicon solar cells. Prog Photovolt 4(1):3–33
45.
go back to reference Mohamad AA (1997) High efficiency solar air heater. Sol Energy 60(2):71–76CrossRef Mohamad AA (1997) High efficiency solar air heater. Sol Energy 60(2):71–76CrossRef
46.
go back to reference Kumar A, Saini RP, Saini JS (2014) A review of thermohydraulic performance of artificially roughened solar air heaters. Renew Sustain Energy Rev 37:100–122CrossRef Kumar A, Saini RP, Saini JS (2014) A review of thermohydraulic performance of artificially roughened solar air heaters. Renew Sustain Energy Rev 37:100–122CrossRef
47.
go back to reference Close DJ (1963) Solar air heaters for low and moderate temperature applications. Sol Energy 7(3):117–124CrossRef Close DJ (1963) Solar air heaters for low and moderate temperature applications. Sol Energy 7(3):117–124CrossRef
48.
go back to reference Kumar A, Saini RP, Saini JS (2012) Heat and fluid flow characteristics of roughened solar air heater ducts—a review. Renew Energy 47:77–94CrossRef Kumar A, Saini RP, Saini JS (2012) Heat and fluid flow characteristics of roughened solar air heater ducts—a review. Renew Energy 47:77–94CrossRef
49.
go back to reference Gupta CL, Garg HP (1967) Performance studies on solar air heaters. Sol Energy 11(1):25–31CrossRef Gupta CL, Garg HP (1967) Performance studies on solar air heaters. Sol Energy 11(1):25–31CrossRef
50.
go back to reference Bhargava AK, Garg HP, Sharma VK (1982) Evaluation of the performance of air heaters of conventional designs. Sol Energy 29(6):523–533CrossRef Bhargava AK, Garg HP, Sharma VK (1982) Evaluation of the performance of air heaters of conventional designs. Sol Energy 29(6):523–533CrossRef
51.
go back to reference Biondi P, Cicala L, Farina G (1988) Performance analysis of solar air heaters of conventional design. Sol Energy 41(1):101–107CrossRef Biondi P, Cicala L, Farina G (1988) Performance analysis of solar air heaters of conventional design. Sol Energy 41(1):101–107CrossRef
52.
go back to reference Loveday DL (1988) Thermal performance of air-heating solar collectors with thick, poorly conducting absorber plates. Sol Energy 41(6):593–602CrossRef Loveday DL (1988) Thermal performance of air-heating solar collectors with thick, poorly conducting absorber plates. Sol Energy 41(6):593–602CrossRef
53.
go back to reference Satcunanathan S, Deonarine S (1973) A two-pass solar air heater. Sol Energy 15(1):41–49CrossRef Satcunanathan S, Deonarine S (1973) A two-pass solar air heater. Sol Energy 15(1):41–49CrossRef
54.
go back to reference Garg HP, Sharma VK, Bhargava AK (1985) Theory of multiple-pass solar air heaters. Energy 10(5):589–599CrossRef Garg HP, Sharma VK, Bhargava AK (1985) Theory of multiple-pass solar air heaters. Energy 10(5):589–599CrossRef
55.
go back to reference Wijeysundera NE, Ah LL, Tjioe LE (1982) Thermal performance study of two-pass solar air heaters. Sol Energy 28(5):363–370CrossRef Wijeysundera NE, Ah LL, Tjioe LE (1982) Thermal performance study of two-pass solar air heaters. Sol Energy 28(5):363–370CrossRef
56.
go back to reference Science E (1966) An investigation on packed-bed collectors Science E (1966) An investigation on packed-bed collectors
57.
go back to reference Lansing FL, Clarke V, Reynolds R (1979) A high performance porous flat-plate solar collector. Energy 4(4):685–694CrossRef Lansing FL, Clarke V, Reynolds R (1979) A high performance porous flat-plate solar collector. Energy 4(4):685–694CrossRef
58.
go back to reference Parker BF, Lindley MR, Colliver DG, Murphy WE (1993) Thermal performance of three solar air heaters. Sol Energy 51(6):467–479CrossRef Parker BF, Lindley MR, Colliver DG, Murphy WE (1993) Thermal performance of three solar air heaters. Sol Energy 51(6):467–479CrossRef
59.
go back to reference Lalude O, Buchberg H (1971) Design and application of honeycomb porous-bed solar-air heaters. Sol Energy 13(2):223–242CrossRef Lalude O, Buchberg H (1971) Design and application of honeycomb porous-bed solar-air heaters. Sol Energy 13(2):223–242CrossRef
60.
go back to reference Selçuk K (1971) Thermal and economic analysis of the overlapped-glass plate solar-air heater. Sol Energy 13(2):165–191CrossRef Selçuk K (1971) Thermal and economic analysis of the overlapped-glass plate solar-air heater. Sol Energy 13(2):165–191CrossRef
61.
go back to reference Choudhury C, Garg HP (1991) Evaluation of a jet plate solar air heater. Sol Energy 46(4):199–209CrossRef Choudhury C, Garg HP (1991) Evaluation of a jet plate solar air heater. Sol Energy 46(4):199–209CrossRef
62.
go back to reference Klein SA, Beckman WA, Duffie JA (1976) A design procedure for solar heating systems. Sol Energy 18(2):113–127CrossRef Klein SA, Beckman WA, Duffie JA (1976) A design procedure for solar heating systems. Sol Energy 18(2):113–127CrossRef
63.
go back to reference Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sustain Energy Rev 14(8):2298–2314CrossRef Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sustain Energy Rev 14(8):2298–2314CrossRef
64.
go back to reference Bal LM, Satya S, Naik SN, Meda V (2011) Review of solar dryers with latent heat storage systems for agricultural products. Renew Sustain Energy Rev 15(1):876–880CrossRef Bal LM, Satya S, Naik SN, Meda V (2011) Review of solar dryers with latent heat storage systems for agricultural products. Renew Sustain Energy Rev 15(1):876–880CrossRef
65.
go back to reference Schröder J, Gawron K (1981) Latent heat storage. Int J Energy 5(March 1980):103–109 Schröder J, Gawron K (1981) Latent heat storage. Int J Energy 5(March 1980):103–109
66.
go back to reference Salunkhe PB, Krishna DJ (2017) Investigations on latent heat storage materials for solar water and space heating applications. J Energy Storage 12:243–260CrossRef Salunkhe PB, Krishna DJ (2017) Investigations on latent heat storage materials for solar water and space heating applications. J Energy Storage 12:243–260CrossRef
67.
go back to reference Rabin Y, Bar-Niv I, Korin E, Mikic B (1995) Integrated solar collector storage system based on a salt-hydrate phase-change material. Sol Energy 55(6):435–444CrossRef Rabin Y, Bar-Niv I, Korin E, Mikic B (1995) Integrated solar collector storage system based on a salt-hydrate phase-change material. Sol Energy 55(6):435–444CrossRef
68.
69.
go back to reference Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11(6):1146–1166CrossRef Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11(6):1146–1166CrossRef
70.
go back to reference Naphon P, Kangtragool B (2003) Theoretical study on heat transfer characteristics and performance of the plat-plate solar air heaters. Int Commun Heat Mass Transf 30(3):1125–1136CrossRef Naphon P, Kangtragool B (2003) Theoretical study on heat transfer characteristics and performance of the plat-plate solar air heaters. Int Commun Heat Mass Transf 30(3):1125–1136CrossRef
71.
go back to reference Morrison DJ, Abdel-Khalik SI (1978) Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Sol Energy 20(1):57–67CrossRef Morrison DJ, Abdel-Khalik SI (1978) Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Sol Energy 20(1):57–67CrossRef
72.
go back to reference Jurinak JJ, Abdel-Khalik SI (1978) Properties optimization for phase-change energy storage in air-based solar heating systems. Sol Energy 21(5):377–383CrossRef Jurinak JJ, Abdel-Khalik SI (1978) Properties optimization for phase-change energy storage in air-based solar heating systems. Sol Energy 21(5):377–383CrossRef
73.
go back to reference Hammou ZA, Lacroix M (2006) A new PCM storage system for managing simultaneously solar and electric energy, vol 38, pp 258–265 Hammou ZA, Lacroix M (2006) A new PCM storage system for managing simultaneously solar and electric energy, vol 38, pp 258–265
74.
go back to reference Energy R (2000) Experimental and theoretical investigation of a solar heating system with heat pump, vol 21 Energy R (2000) Experimental and theoretical investigation of a solar heating system with heat pump, vol 21
75.
go back to reference Mettawee ES, Assassa GMR (2006) Experimental study of a compact PCM solar collector, vol 31, pp 2958–296 Mettawee ES, Assassa GMR (2006) Experimental study of a compact PCM solar collector, vol 31, pp 2958–296
76.
go back to reference Zhao DL, Li Y, Dai YJ, Wang RZ (2011) Optimal study of a solar air heating system with pebble bed energy storage, vol 52, pp 2392–2400 Zhao DL, Li Y, Dai YJ, Wang RZ (2011) Optimal study of a solar air heating system with pebble bed energy storage, vol 52, pp 2392–2400
Metadata
Title
Review on Integration of Solar Air Heaters with Thermal Energy Storage
Authors
Prashant Saini
Dhiraj V. Patil
Satvasheel Powar
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7206-2_9