Skip to main content
Top
Published in: Journal of Computational Electronics 3/2020

19-06-2020

RF analysis of intercalated graphene nanoribbon-based global-level interconnects

Authors: Manjit Kaur, Neena Gupta, Sanjeev Kumar, Balwinder Raj, Arun K. Singh

Published in: Journal of Computational Electronics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intercalation doping is emerging as a prospective solution to enhance the performance of graphene nanoribbon interconnects. In this paper, the radio frequency (RF) analysis of stage-2 arsenic pentafluoride- and lithium-doped multilayer graphene nanoribbons (MLGNRs) has been carried out for global-level interconnects in terms of skin depth, surface impedance, critical ratio (CR), transfer gain, and 3-dB bandwidth. The skin-depth results demonstrate that doped MLGNRs exhibit minimum performance degradation primarily due to their higher conductivity, mean free path, and momentum relaxation time as compared to neutral MLGNR. An equivalent second-order accurate RLC model of an intercalation-doped MLGNR has been used to extract the transfer gain and 3-dB bandwidth results at 14-nm technology node for global-level interconnects. The results are further evaluated by implementing an advanced π-type equivalent single conductor derived from multi-conductor transmission line model. The doped MLGNR interconnects demonstrate 11-fold enhancement of 3-dB bandwidth as compared to copper (Cu). Also, the delay and energy-delay-product (EDP) computations in time domain for doped MLGNR interconnects exhibit nearly 10 times lesser delay and significant reduction in EDP than Cu counterparts. It is also observed that optimum values for 3-dB bandwidth and EDP parameters for intercalated MLGNRs could be achieved through width optimization. The RF and transient results validate intercalated MLGNRs as a potential candidate to replace Cu for next-generation global-level interconnects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(5), 129–144 (2002) Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(5), 129–144 (2002)
2.
go back to reference Naeemi, A., Meindl, J.D.: Conductance modeling for GNR interconnect. IEEE Electron Device Lett. 28(5), 428–431 (2007) Naeemi, A., Meindl, J.D.: Conductance modeling for GNR interconnect. IEEE Electron Device Lett. 28(5), 428–431 (2007)
3.
go back to reference Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gig scale integrated systems. IEEE Trans. Electron Devices 54(1), 26–37 (2007) Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gig scale integrated systems. IEEE Trans. Electron Devices 54(1), 26–37 (2007)
4.
go back to reference Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008) Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)
5.
go back to reference Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for Graphene. Nature 490, 192–200 (2012) Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for Graphene. Nature 490, 192–200 (2012)
6.
go back to reference Zhang, R., Zhao, W.S., Hu, J., Yin, W.Y.: Electrothermal characterization of multilevel Cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (ESD). IEEE Trans. Nanotechnol. 14(2), 205–209 (2015) Zhang, R., Zhao, W.S., Hu, J., Yin, W.Y.: Electrothermal characterization of multilevel Cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (ESD). IEEE Trans. Nanotechnol. 14(2), 205–209 (2015)
7.
go back to reference Singh, A.K., Auton, G., Hill, E., Song, A.M.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015) Singh, A.K., Auton, G., Hill, E., Song, A.M.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015)
8.
go back to reference Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Device 56(8), 1567–1578 (2009) Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Device 56(8), 1567–1578 (2009)
9.
go back to reference Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008) Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)
10.
go back to reference Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009) Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)
11.
go back to reference Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014) Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)
12.
go back to reference Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016) Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)
13.
go back to reference Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012) Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)
14.
go back to reference Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015) Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)
15.
go back to reference Zhao, S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagnetic Compatibility 56(3), 638–645 (2014) Zhao, S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagnetic Compatibility 56(3), 638–645 (2014)
16.
go back to reference Kaur, M., Gupta, N., Singh, A.K.: Impact of geometrical parameters on performance of MWCNT based chip interconnects. In: Proceedings of Progress In: Electromagnetics Research Symposium (PIERS), 988–993 2017 Kaur, M., Gupta, N., Singh, A.K.: Impact of geometrical parameters on performance of MWCNT based chip interconnects. In: Proceedings of Progress In: Electromagnetics Research Symposium (PIERS), 988–993 2017
17.
go back to reference Kaur, M., Gupta, N., Singh, A.K.: Performance Analysis of Multilayer Graphene Nanoribbon Based Interconnects. In: Proceedings of IEEE MTT-S International Microwave and RF Conference (IMaRC), 176–179 2017 Kaur, M., Gupta, N., Singh, A.K.: Performance Analysis of Multilayer Graphene Nanoribbon Based Interconnects. In: Proceedings of IEEE MTT-S International Microwave and RF Conference (IMaRC), 176–179 2017
18.
go back to reference Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. J. Microprocessors and Microsystems. 67, 18–27 (2019) Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. J. Microprocessors and Microsystems. 67, 18–27 (2019)
19.
go back to reference Singh, K., Raj, B.: Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J. Electron. Mater. 44(12), 4825–4835 (2015) Singh, K., Raj, B.: Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J. Electron. Mater. 44(12), 4825–4835 (2015)
20.
go back to reference Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017) Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)
21.
go back to reference Sharma, H., Singh, K.: Thermally aware modeling and performance analysis of MLGNR as on-chip VLSI interconnect material. J. Electron. Mater. 48(8), 4902–4912 (2019) Sharma, H., Singh, K.: Thermally aware modeling and performance analysis of MLGNR as on-chip VLSI interconnect material. J. Electron. Mater. 48(8), 4902–4912 (2019)
22.
go back to reference Singh, K., Thakur, A.: Comparative analysis of mixed CNTs and MWCNTs as VLSI interconnects for deep sub-micron technology nodes. J. Electron. Mater. 48(4), 2543–2554 (2019) Singh, K., Thakur, A.: Comparative analysis of mixed CNTs and MWCNTs as VLSI interconnects for deep sub-micron technology nodes. J. Electron. Mater. 48(4), 2543–2554 (2019)
23.
go back to reference Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019) Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019)
24.
go back to reference Das, S., Das, D., Rahaman, H.: Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J. Comput. Electron. 17(4), 1695–1708 (2018) Das, S., Das, D., Rahaman, H.: Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J. Comput. Electron. 17(4), 1695–1708 (2018)
25.
go back to reference Kumar, V.R., Majumder, M.K., Alam, A., et al.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015) Kumar, V.R., Majumder, M.K., Alam, A., et al.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015)
26.
go back to reference Bhattacharya, S., Das, D., Rahaman, H.: Reduced thickness interconnect model using GNR to avoid crosstalk effects. J. Comput. Electron. 15(2), 367–380 (2016) Bhattacharya, S., Das, D., Rahaman, H.: Reduced thickness interconnect model using GNR to avoid crosstalk effects. J. Comput. Electron. 15(2), 367–380 (2016)
27.
go back to reference Bhattacharya, S., Das, S., Mukhopadhyay, A., et al.: Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method. J. Comput. Electron. 17(4), 1536–1548 (2018) Bhattacharya, S., Das, S., Mukhopadhyay, A., et al.: Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method. J. Comput. Electron. 17(4), 1536–1548 (2018)
28.
go back to reference Bagheri, A., Ranjbar, M., Haji-Nasiri, S., et al.: Modelling and analysis of crosstalk induced noise effects in bundle SWCNT interconnects and its impact on signal stability. J. Comput. Electron. 16(3), 845–855 (2017) Bagheri, A., Ranjbar, M., Haji-Nasiri, S., et al.: Modelling and analysis of crosstalk induced noise effects in bundle SWCNT interconnects and its impact on signal stability. J. Comput. Electron. 16(3), 845–855 (2017)
29.
go back to reference Li, H., Banerjee, K.: High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices. 56(10), 2202–2214 (2009) Li, H., Banerjee, K.: High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices. 56(10), 2202–2214 (2009)
30.
go back to reference Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance modeling. IEEE Trans. Electron. Devices. 58(3), 843–852 (2011) Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance modeling. IEEE Trans. Electron. Devices. 58(3), 843–852 (2011)
31.
go back to reference Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance analysis and implications for inductor design. IEEE Trans. Electron Devices 58(3), 853–859 (2011) Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance analysis and implications for inductor design. IEEE Trans. Electron Devices 58(3), 853–859 (2011)
32.
go back to reference Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016) Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016)
33.
go back to reference Kumar, P., Singh, A., Garg, A., Sharma, R.: Compact models for transient analysis of single-layer graphene nanoribbon interconnects. In: Proceedings of 15th UKSim Computer Modelling and Simulation, 809–814 2013 Kumar, P., Singh, A., Garg, A., Sharma, R.: Compact models for transient analysis of single-layer graphene nanoribbon interconnects. In: Proceedings of 15th UKSim Computer Modelling and Simulation, 809–814 2013
34.
go back to reference Bhattacharya, S., Das, D., Rahaman, H.: Stability analysis in top contact and side-contact graphene nanoribbon interconnects. IETE J. Res. 63(4), 588–596 (2017) Bhattacharya, S., Das, D., Rahaman, H.: Stability analysis in top contact and side-contact graphene nanoribbon interconnects. IETE J. Res. 63(4), 588–596 (2017)
35.
go back to reference Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014) Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014)
36.
go back to reference Dresselhaus, M.S., Dresselhaus, : Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002) Dresselhaus, M.S., Dresselhaus, : Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002)
37.
go back to reference Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016) Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)
38.
go back to reference Kumbhare, V.R., Paltani, P.P., Venkataiah, C., Majumder, M.K.: Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area. IEEE Trans. Nanotechnol. 18, 606–610 (2019) Kumbhare, V.R., Paltani, P.P., Venkataiah, C., Majumder, M.K.: Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area. IEEE Trans. Nanotechnol. 18, 606–610 (2019)
39.
go back to reference Singh, A.K., Auton, G., Hill, E., Song, A.: Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique. 2D Mater. 5(3), 035023 (2018) Singh, A.K., Auton, G., Hill, E., Song, A.: Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique. 2D Mater. 5(3), 035023 (2018)
40.
go back to reference Garg, S., Kaushal, B., Kumar, S., Kasjoo, S.R., Mahapatra, S., Singh, A.K.: Extraction of trench capacitance and reverse recovery time of InGaAs self-switching diode. IEEE Trans. on Nanotech. 18, 925–931 (2019) Garg, S., Kaushal, B., Kumar, S., Kasjoo, S.R., Mahapatra, S., Singh, A.K.: Extraction of trench capacitance and reverse recovery time of InGaAs self-switching diode. IEEE Trans. on Nanotech. 18, 925–931 (2019)
41.
go back to reference Garg, A., Jain, N., Singh, A.K.: Modeling and simulation of a graphene-based three-terminal junction rectifier. J. Comput. Electron. 17(2), 562 (2018) Garg, A., Jain, N., Singh, A.K.: Modeling and simulation of a graphene-based three-terminal junction rectifier. J. Comput. Electron. 17(2), 562 (2018)
42.
go back to reference Singh, A.K., Kasjoo, S.R., Song, A.M.: Low-frequency noise of a ballistic rectifier. IEEE Trans. on Nanotech. 13(3), 527–531 (2014) Singh, A.K., Kasjoo, S.R., Song, A.M.: Low-frequency noise of a ballistic rectifier. IEEE Trans. on Nanotech. 13(3), 527–531 (2014)
43.
go back to reference Garg, A., Jain, N., Kumar, S., Kasjoo, S.R., Singh, A.K.: Analysis of nonlinear characteristics of a graphene based four-terminal ballistic rectifier using a drift-diffusion model. Nanoscale Adv. 10, 1–9 (2019) Garg, A., Jain, N., Kumar, S., Kasjoo, S.R., Singh, A.K.: Analysis of nonlinear characteristics of a graphene based four-terminal ballistic rectifier using a drift-diffusion model. Nanoscale Adv. 10, 1–9 (2019)
44.
go back to reference Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on chip interconnects. Proc IEEE 101(7), 1740–1765 (2013) Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on chip interconnects. Proc IEEE 101(7), 1740–1765 (2013)
45.
go back to reference Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001) Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001)
46.
go back to reference Reuter, G.E.H., Sondheimer, E.H.: The theory of the anomalous skin effect in metals. Proc Royal Soc. A: Math. Phys. Sci. 195, 336–364 (1948)MATH Reuter, G.E.H., Sondheimer, E.H.: The theory of the anomalous skin effect in metals. Proc Royal Soc. A: Math. Phys. Sci. 195, 336–364 (1948)MATH
47.
go back to reference Benedict, L.X., Crespi, V.H., Louie, S.G., Cohen, M.L.: Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys. Rev. B Condens. Matter. 52(20), 14935–14940 (1995) Benedict, L.X., Crespi, V.H., Louie, S.G., Cohen, M.L.: Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys. Rev. B Condens. Matter. 52(20), 14935–14940 (1995)
48.
go back to reference Bao, W., Wan, J., Han, X., et al.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5(4224), 1–9 (2014) Bao, W., Wan, J., Han, X., et al.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5(4224), 1–9 (2014)
49.
go back to reference Kerr, A.R.: Surface impedance of superconductors and normal conductors in EM simulators. NRAO Electron Division, MMA Memo 245, 1–16 (1999) Kerr, A.R.: Surface impedance of superconductors and normal conductors in EM simulators. NRAO Electron Division, MMA Memo 245, 1–16 (1999)
51.
go back to reference Amore, M.D., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010) Amore, M.D., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010)
52.
go back to reference Dworsky, L.N.: Modern Transmission Line Theory and Applications. John Wiley & Sons, New York (1979) Dworsky, L.N.: Modern Transmission Line Theory and Applications. John Wiley & Sons, New York (1979)
Metadata
Title
RF analysis of intercalated graphene nanoribbon-based global-level interconnects
Authors
Manjit Kaur
Neena Gupta
Sanjeev Kumar
Balwinder Raj
Arun K. Singh
Publication date
19-06-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01530-5

Other articles of this Issue 3/2020

Journal of Computational Electronics 3/2020 Go to the issue