Skip to main content
Top

2021 | OriginalPaper | Chapter

Rheological Properties of Hybrid Nanocomposites Based on Graphene and Other Nanoparticles

Authors : Fatima-Zahra Semlali Aouragh Hassani, Rachid Bouhfid, Abou el Kacem Qaiss

Published in: Graphene and Nanoparticles Hybrid Nanocomposites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of promising nanomaterials is mainly associated with their use in industrial applications, medicine, biology and ecology. Many of the existing materials may not satisfy all the modern civilization fundamental requirements, leading researchers to develop hybrid materials that may present higher properties than the individual components. Hybrid graphene nanocomposites have attracted much attention recently because of their unique structure and remarkable mechanical, electrical, thermal and rheological properties. The main attention in this chapter is firstly focused on the graphene-based hybrid nanocomposites, their different types, synthesis methods and application fields. Then on the rheological properties of graphene-based hybrid materials, in order to quantify the dispersion of hybrid nanofillers in polymer matrices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang C, Liu TX (2012) A review on hybridization modification of graphene and its polymer nanocomposites. Chin Sci Bull 57(23):3010–3021CrossRef Zhang C, Liu TX (2012) A review on hybridization modification of graphene and its polymer nanocomposites. Chin Sci Bull 57(23):3010–3021CrossRef
2.
go back to reference Hu C, Lu T, Chen F, Zhang R (2013) A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. J Chin Adv Mater Soc 1(1):21–39CrossRef Hu C, Lu T, Chen F, Zhang R (2013) A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. J Chin Adv Mater Soc 1(1):21–39CrossRef
3.
go back to reference Dmitriev AS (2019) Hybrid graphene nanocomposites: thermal interface materials and functional energy materials. Graph Prod Appl [Working Title], 1–23 Dmitriev AS (2019) Hybrid graphene nanocomposites: thermal interface materials and functional energy materials. Graph Prod Appl [Working Title], 1–23
4.
go back to reference Jawaid M, el Kacem Qaiss A, Bouhfid R (2016) Nanoclay reinforced polymer composites: natural fibre/nanoclay hybrid composites. Eng Mater (July), 301 Jawaid M, el Kacem Qaiss A, Bouhfid R (2016) Nanoclay reinforced polymer composites: natural fibre/nanoclay hybrid composites. Eng Mater (July), 301
5.
go back to reference Ouarhim W, Semlali Aouragh Hassani F-Z, el Kacem Qaiss A, Bouhfid R (2019) Rheology of polymer nanocomposites. In: Rheology of polymer blends and nanocomposites theory, modelling and applications, pp 73–96 Ouarhim W, Semlali Aouragh Hassani F-Z, el Kacem Qaiss A, Bouhfid R (2019) Rheology of polymer nanocomposites. In: Rheology of polymer blends and nanocomposites theory, modelling and applications, pp 73–96
6.
go back to reference Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872CrossRef Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872CrossRef
7.
go back to reference Semlali Aouragh Hassani F-Z, Ouarhim W, Zari N, Bouhfid R, el Kacem Qaiss A (2019) Natural fiber-based biocomposites. In: Biodegradable composites materials, manufacturing and engineering, pp 49–79 Semlali Aouragh Hassani F-Z, Ouarhim W, Zari N, Bouhfid R, el Kacem Qaiss A (2019) Natural fiber-based biocomposites. In: Biodegradable composites materials, manufacturing and engineering, pp 49–79
8.
go back to reference Semlali Aouragh Hassani F-Z et al (2019) Injection molding of short coir fiber polypropylene biocomposites: prediction of the mold filling phase. Polym Compos 40(10):4042–4055CrossRef Semlali Aouragh Hassani F-Z et al (2019) Injection molding of short coir fiber polypropylene biocomposites: prediction of the mold filling phase. Polym Compos 40(10):4042–4055CrossRef
9.
go back to reference Semlali Aouragh Hassani F-Z et al (2019) Mechanical properties prediction of polypropylene/short coir fibers composites using a self-consistent approach. Polym Compos 40(5):1919–1929CrossRef Semlali Aouragh Hassani F-Z et al (2019) Mechanical properties prediction of polypropylene/short coir fibers composites using a self-consistent approach. Polym Compos 40(5):1919–1929CrossRef
10.
go back to reference Berthelot J (1999) Matériaux composites, comportement et analyse des structures. Edition TEC & DOC, Cachan Berthelot J (1999) Matériaux composites, comportement et analyse des structures. Edition TEC & DOC, Cachan
11.
go back to reference Liste des termes, expressions et définitions adoptés et publiés au Journal officiel de la République française, vocabulaire des polymères, J.O., 01 mars 2002. Lexique de la recherche clinique et de la médecine factuelle Liste des termes, expressions et définitions adoptés et publiés au Journal officiel de la République française, vocabulaire des polymères, J.O., 01 mars 2002. Lexique de la recherche clinique et de la médecine factuelle
12.
go back to reference Coll MW et al (2015) Les nanotechnologies. Edition Dunod, Paris (2003) Coll MW et al (2015) Les nanotechnologies. Edition Dunod, Paris (2003)
13.
go back to reference Semlali Aouragh Hassani F-Z et al (2019) N-silylated benzothiazolium dye as a coupling agent for polylactic acid/date palm fiber bio-composites. J Polym Environ 0123456789 Semlali Aouragh Hassani F-Z et al (2019) N-silylated benzothiazolium dye as a coupling agent for polylactic acid/date palm fiber bio-composites. J Polym Environ 0123456789
14.
go back to reference Semlali Aouragh Hassani F-Z, El Bourakadi K, Merghoub N, el Kacem Qaiss A, Bouhfid R (2020) Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays. Int J Biol Macromol 148:316–323 Semlali Aouragh Hassani F-Z, El Bourakadi K, Merghoub N, el Kacem Qaiss A, Bouhfid R (2020) Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays. Int J Biol Macromol 148:316–323
15.
go back to reference Jenkins EW (1973) The polymorphism of elements and compounds. Methuen, London Jenkins EW (1973) The polymorphism of elements and compounds. Methuen, London
16.
go back to reference Heilig ML (1994) United States patent office. ACM SIGGRAPH Comput Graph 28(2):131–134CrossRef Heilig ML (1994) United States patent office. ACM SIGGRAPH Comput Graph 28(2):131–134CrossRef
17.
go back to reference Grigorieva IV, Firsov AA, Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Grigorieva IV, Firsov AA, Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
18.
go back to reference Kroto RE, Heath HW, O’Brien JR, Curl SC, Smalley RF (1985) C60 buckminsterfullerene. Nature 318(6042):162–163CrossRef Kroto RE, Heath HW, O’Brien JR, Curl SC, Smalley RF (1985) C60 buckminsterfullerene. Nature 318(6042):162–163CrossRef
19.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
20.
go back to reference Moissan H (1894) Nouvelles expériences sur la reproduction du diamant. C R Acad Sci 118:320–326 Moissan H (1894) Nouvelles expériences sur la reproduction du diamant. C R Acad Sci 118:320–326
21.
go back to reference Wakabayashi M, Fujita K, Ajiki M, Sigrist H (1999) Electronic and magnetic properties of nanographite ribbons. Phys Rev B Condens Matter Mater Phys 59(12):8271–8282CrossRef Wakabayashi M, Fujita K, Ajiki M, Sigrist H (1999) Electronic and magnetic properties of nanographite ribbons. Phys Rev B Condens Matter Mater Phys 59(12):8271–8282CrossRef
22.
go back to reference Iijima F, Yudasaka S, Yamada M, Bandow R, Suenaga S, Kokai K, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-homs. Chem Phys Lett 309(3–4):165–170CrossRef Iijima F, Yudasaka S, Yamada M, Bandow R, Suenaga S, Kokai K, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-homs. Chem Phys Lett 309(3–4):165–170CrossRef
23.
go back to reference Naess SN, Elgsaeter A, Helgesen G, Knudsen KD (2009) Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater 10(6):1–6CrossRef Naess SN, Elgsaeter A, Helgesen G, Knudsen KD (2009) Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater 10(6):1–6CrossRef
24.
go back to reference Morgan P (2005) Carbon fibers and their composites. Taylor & Francis Group, CRC Press, USACrossRef Morgan P (2005) Carbon fibers and their composites. Taylor & Francis Group, CRC Press, USACrossRef
25.
26.
go back to reference Landau LD, Lifshitz EM (1967) Theory of elasticity, vol 7. Ouvrage, Editions MIR, Moscou Landau LD, Lifshitz EM (1967) Theory of elasticity, vol 7. Ouvrage, Editions MIR, Moscou
27.
go back to reference Schedin F et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef Schedin F et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef
28.
go back to reference Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3):864–870CrossRef Reddy CD, Rajendran S, Liew KM (2006) Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3):864–870CrossRef
29.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science (80-) 321(5887):385–388 Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science (80-) 321(5887):385–388
30.
go back to reference Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
31.
go back to reference Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRef Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRef
32.
go back to reference Chang CW, Liao YC (2016) Accelerated sedimentation velocity assessment for nanowires stabilized in a non-Newtonian fluid. Langmuir 32(51):13620–13626CrossRef Chang CW, Liao YC (2016) Accelerated sedimentation velocity assessment for nanowires stabilized in a non-Newtonian fluid. Langmuir 32(51):13620–13626CrossRef
33.
go back to reference Kulkarni HB, Tambe P, Joshi GM (2018) Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Compos Interfaces 25(5–7):381–414CrossRef Kulkarni HB, Tambe P, Joshi GM (2018) Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Compos Interfaces 25(5–7):381–414CrossRef
34.
go back to reference Patil U et al (2015) Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16):6999–7021CrossRef Patil U et al (2015) Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16):6999–7021CrossRef
35.
go back to reference Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525CrossRef Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525CrossRef
36.
go back to reference Bourlinos AB, Georgakilas V, Zboril R, Sterioti TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845CrossRef Bourlinos AB, Georgakilas V, Zboril R, Sterioti TA, Stubos AK (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845CrossRef
37.
go back to reference Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef
38.
go back to reference Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRef Behabtu N et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5(6):406–411CrossRef
39.
go back to reference Sanchez C, Ribot F, Rozes L, Alonso B (2000) Design of hybrid organic-inorganic nanocomposites synthesized via sol–gel chemistry. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 354(Dec 2013):143–158CrossRef Sanchez C, Ribot F, Rozes L, Alonso B (2000) Design of hybrid organic-inorganic nanocomposites synthesized via sol–gel chemistry. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 354(Dec 2013):143–158CrossRef
40.
go back to reference Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Angew Chem (Int Ed Engl) 39(Suppl 15):19–52 Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Angew Chem (Int Ed Engl) 39(Suppl 15):19–52
41.
go back to reference Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRef Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRef
42.
go back to reference Dizhbite T et al (2007) Elaboration and characterization of organic/inorganic hybrid nanoporous material incorporating Keggin-type Mo–Si polyanions. J Phys Conf Ser 93(1):012011CrossRef Dizhbite T et al (2007) Elaboration and characterization of organic/inorganic hybrid nanoporous material incorporating Keggin-type Mo–Si polyanions. J Phys Conf Ser 93(1):012011CrossRef
43.
go back to reference Vaia RA, Emmanuel P (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26(5):394–401CrossRef Vaia RA, Emmanuel P (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26(5):394–401CrossRef
44.
go back to reference Schöllhorn R (1996) Intercalation systems as nanostructured functional materials. Chem Mater 8(8):1747–1757CrossRef Schöllhorn R (1996) Intercalation systems as nanostructured functional materials. Chem Mater 8(8):1747–1757CrossRef
45.
go back to reference Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30(25):7990–7999CrossRef Vaia RA, Giannelis EP (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30(25):7990–7999CrossRef
46.
go back to reference Komori Y, Sugahara Y, Kuroda K (1998) A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. J Mater Res 13(4):930–934CrossRef Komori Y, Sugahara Y, Kuroda K (1998) A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. J Mater Res 13(4):930–934CrossRef
47.
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63CrossRef Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63CrossRef
48.
go back to reference Carrado KA, Xu L (1998) In situ synthesis of polymer–clay nanocomposites from silicate gels. Chem Mater 10(5):1440–1445CrossRef Carrado KA, Xu L (1998) In situ synthesis of polymer–clay nanocomposites from silicate gels. Chem Mater 10(5):1440–1445CrossRef
49.
go back to reference Aranda P, Ruiz-Hitzky E (1999) Poly(ethylene oxide)/NH4+-smectite nanocomposites. Appl Clay Sci 15(1–2):119–135CrossRef Aranda P, Ruiz-Hitzky E (1999) Poly(ethylene oxide)/NH4+-smectite nanocomposites. Appl Clay Sci 15(1–2):119–135CrossRef
50.
go back to reference Kikuta K, Ohta K, Takagi K (2002) Synthesis of transparent magadiite-silica hybrid monoliths. Chem Mater 14(7):3123–3127CrossRef Kikuta K, Ohta K, Takagi K (2002) Synthesis of transparent magadiite-silica hybrid monoliths. Chem Mater 14(7):3123–3127CrossRef
51.
go back to reference Leu CM, Wu ZW, Wei KH (2002) Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites. Chem Mater 14(7):3016–3021CrossRef Leu CM, Wu ZW, Wei KH (2002) Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites. Chem Mater 14(7):3016–3021CrossRef
52.
go back to reference Mukkanti K, Subba Rao YV, Choudary BM (1989) Selective and sequential reduction of nitroaromatics by montmorillonitesilylaminepalladium(II) complex. Tetrahedron Lett. 30(2):251–252CrossRef Mukkanti K, Subba Rao YV, Choudary BM (1989) Selective and sequential reduction of nitroaromatics by montmorillonitesilylaminepalladium(II) complex. Tetrahedron Lett. 30(2):251–252CrossRef
53.
go back to reference Caillère S, Hénin S, Rautureau M (1982) Minéralogie des argiles, tome 1: structure et propriétés physico-chimiques, 2nd edn. Masson Caillère S, Hénin S, Rautureau M (1982) Minéralogie des argiles, tome 1: structure et propriétés physico-chimiques, 2nd edn. Masson
54.
go back to reference Caillère S, Hénin S, Rautureau M (1982) Minéralogie des argile, tome 2: classification et nomenclature, 2nd edn. Masson Caillère S, Hénin S, Rautureau M (1982) Minéralogie des argile, tome 2: classification et nomenclature, 2nd edn. Masson
55.
go back to reference Nasibulin AG et al (2007) A novel hybrid carbon material. Nat Nanotechnol 2(3):156–161CrossRef Nasibulin AG et al (2007) A novel hybrid carbon material. Nat Nanotechnol 2(3):156–161CrossRef
56.
go back to reference Parker CB, Raut AS, Brown B, Stoner BR, Glass JT (2012) Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res 27(7):1046–1053CrossRef Parker CB, Raut AS, Brown B, Stoner BR, Glass JT (2012) Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res 27(7):1046–1053CrossRef
57.
go back to reference JT Group (2012) James’ bond: a graphene/nanotube hybrid. Physorg, 27–29 JT Group (2012) James’ bond: a graphene/nanotube hybrid. Physorg, 27–29
58.
go back to reference Lan G et al (2019) Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination. Chem Commun 55(10):1430–1433CrossRef Lan G et al (2019) Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination. Chem Commun 55(10):1430–1433CrossRef
59.
go back to reference Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45(3):715–752CrossRef Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45(3):715–752CrossRef
60.
go back to reference Krueger A (2008) Diamond nanoparticles: jewels for chemistry and physics. Adv Mater 20(12):2445–2449CrossRef Krueger A (2008) Diamond nanoparticles: jewels for chemistry and physics. Adv Mater 20(12):2445–2449CrossRef
61.
go back to reference Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212CrossRef Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212CrossRef
62.
go back to reference Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polym (Guildf) 46(20):8641–8660CrossRef Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polym (Guildf) 46(20):8641–8660CrossRef
63.
go back to reference Koo CM, Kim MJ, Choi MH, Kim SO, Chung IJ (2003) Mechanical and rheologaical properties of the maleated PP-layaerd silicate nanocomposites with different morphology. J Appl Polym Sci 88:1526–1535CrossRef Koo CM, Kim MJ, Choi MH, Kim SO, Chung IJ (2003) Mechanical and rheologaical properties of the maleated PP-layaerd silicate nanocomposites with different morphology. J Appl Polym Sci 88:1526–1535CrossRef
64.
go back to reference Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Disorientation kinetics of aligned polymer layered silicate nanocomposites. Macromolecules 36(11):4188–4194CrossRef Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Disorientation kinetics of aligned polymer layered silicate nanocomposites. Macromolecules 36(11):4188–4194CrossRef
65.
go back to reference Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33(10):3739–3746CrossRef Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33(10):3739–3746CrossRef
66.
go back to reference Jeon HS, Rameshwaram JK, Kim G, Weinkauf DH (2003) Characterization of polyisoprene—clay nanocomposites prepared by solution blending. Polym (Guildf) 44(19):5749–5758CrossRef Jeon HS, Rameshwaram JK, Kim G, Weinkauf DH (2003) Characterization of polyisoprene—clay nanocomposites prepared by solution blending. Polym (Guildf) 44(19):5749–5758CrossRef
67.
go back to reference Jeon HS, Rameshwaram JK, Kim G (2004) Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J Polym Sci Part B Polym Phys 42:1000–1009CrossRef Jeon HS, Rameshwaram JK, Kim G (2004) Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J Polym Sci Part B Polym Phys 42:1000–1009CrossRef
68.
go back to reference Luengo G, Schmitt FJ, Hill R, Israelachvili J (1997) Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30(8):2482–2494CrossRef Luengo G, Schmitt FJ, Hill R, Israelachvili J (1997) Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30(8):2482–2494CrossRef
69.
go back to reference Lim YT, Park OO (2000) Rheological evidence for the microstructure of intercalated polymer/layered silicate nanocomposites. Macromol Rapid Commun 21(5):231–235CrossRef Lim YT, Park OO (2000) Rheological evidence for the microstructure of intercalated polymer/layered silicate nanocomposites. Macromol Rapid Commun 21(5):231–235CrossRef
70.
go back to reference Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858CrossRef Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858CrossRef
71.
go back to reference Wu D, Zhou C, Hong Z, Mao D, Bian Z (2005) Study on rheological behaviour of poly(butylene terephthalate)/ montmorillonite nanocomposites. Eur Polym J 41(9):2199–2207CrossRef Wu D, Zhou C, Hong Z, Mao D, Bian Z (2005) Study on rheological behaviour of poly(butylene terephthalate)/ montmorillonite nanocomposites. Eur Polym J 41(9):2199–2207CrossRef
72.
go back to reference Dae Han C, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polym (Guildf) 34(12):2533–2539CrossRef Dae Han C, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polym (Guildf) 34(12):2533–2539CrossRef
73.
go back to reference Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36(19):7165–7178CrossRef Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36(19):7165–7178CrossRef
74.
go back to reference Gelfer MY et al (2005) Relationships between structure and rheology in model nanocomposites of ethylene-vinyl-based copolymers and organoclays. Macromolecules 38(9):3765–3775CrossRef Gelfer MY et al (2005) Relationships between structure and rheology in model nanocomposites of ethylene-vinyl-based copolymers and organoclays. Macromolecules 38(9):3765–3775CrossRef
75.
go back to reference Hyun YH, Lim ST, Choi HJ, John MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34(23):8084–8093CrossRef Hyun YH, Lim ST, Choi HJ, John MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34(23):8084–8093CrossRef
76.
go back to reference Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622CrossRef Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622CrossRef
77.
go back to reference Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36(12):4443–4451CrossRef Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36(12):4443–4451CrossRef
78.
go back to reference Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polym (Guildf) 44(24):7513–7518CrossRef Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polym (Guildf) 44(24):7513–7518CrossRef
79.
go back to reference Zhan Y, Meng F, Yang X, Liu X (2011) Magnetite-graphene nanosheets (GNs)/poly(arylene ether nitrile) (PEN): fabrication and characterization of a multifunctional nanocomposite film. Colloid Surf A Physicochem Eng Asp 390(1–3):112–119CrossRef Zhan Y, Meng F, Yang X, Liu X (2011) Magnetite-graphene nanosheets (GNs)/poly(arylene ether nitrile) (PEN): fabrication and characterization of a multifunctional nanocomposite film. Colloid Surf A Physicochem Eng Asp 390(1–3):112–119CrossRef
80.
go back to reference Mekhzoum MEM, Essabir H, Rodrigue D, el Kacem Qaiss A (2016) Graphene/montmorillonite hybrid nanocomposites based on polypropylene: morphological, mechanical, and rheological properties. Polym Compos 39(6):1–8 Mekhzoum MEM, Essabir H, Rodrigue D, el Kacem Qaiss A (2016) Graphene/montmorillonite hybrid nanocomposites based on polypropylene: morphological, mechanical, and rheological properties. Polym Compos 39(6):1–8
81.
go back to reference Sun X, Wu Q, Zhang J, Qing Y, Wu Y, Lee S (2017) Rheology, curing temperature and mechanical performance of oil well cement: combined effect of cellulose nanofibers and graphene nano-platelets. Mater Des 114:92–101CrossRef Sun X, Wu Q, Zhang J, Qing Y, Wu Y, Lee S (2017) Rheology, curing temperature and mechanical performance of oil well cement: combined effect of cellulose nanofibers and graphene nano-platelets. Mater Des 114:92–101CrossRef
82.
go back to reference Nanda J, Biswas A, Adhikari B, Banerjee A (2013) A gel-based trihybrid system containing nanofibers, nanosheets, and nanoparticles: modulation of the rheological property and catalysis. Angew Chem Int Ed 52(19):5041–5045CrossRef Nanda J, Biswas A, Adhikari B, Banerjee A (2013) A gel-based trihybrid system containing nanofibers, nanosheets, and nanoparticles: modulation of the rheological property and catalysis. Angew Chem Int Ed 52(19):5041–5045CrossRef
83.
go back to reference Zhang Y, Park SJ (2018) Influence of the nanoscaled hybrid based on nanodiamond@graphene oxide architecture on the rheological and thermo-physical performances of carboxylated-polymeric composites. Compos Part A Appl Sci Manuf 112:356–364CrossRef Zhang Y, Park SJ (2018) Influence of the nanoscaled hybrid based on nanodiamond@graphene oxide architecture on the rheological and thermo-physical performances of carboxylated-polymeric composites. Compos Part A Appl Sci Manuf 112:356–364CrossRef
84.
go back to reference Arjmand M, Sadeghi S, Khajehpour M, Sundararaj U (2017) Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites: rheological and dielectric properties. J Phys Chem C 121(1):169–181CrossRef Arjmand M, Sadeghi S, Khajehpour M, Sundararaj U (2017) Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites: rheological and dielectric properties. J Phys Chem C 121(1):169–181CrossRef
Metadata
Title
Rheological Properties of Hybrid Nanocomposites Based on Graphene and Other Nanoparticles
Authors
Fatima-Zahra Semlali Aouragh Hassani
Rachid Bouhfid
Abou el Kacem Qaiss
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4988-9_11

Premium Partners