Skip to main content
Top
Published in:

2023 | OriginalPaper | Chapter

1. Risiken, Störungen und der Ripple-Effekt in Lieferketten

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Dieses Kapitel ist dem Risikomanagement in Lieferketten gewidmet. Das Kapitel beginnt mit grundlegenden Definitionen von Unsicherheit und Risiken. Anschließend werden Klassifizierungen von Störungsrisiken vorgestellt. Entscheidungen im Rahmen des Managements von Störungsrisiken in der Lieferkette werden diskutiert. Der besondere Fokus richtet sich auf Störungsrisiken und den Ripple-Effekt in Lieferketten. Die Konzepte der Disruption Overlays und Disruption Tails werden erläutert. Schließlich werden Pandemien als eine besondere Art von Lieferkettenunterbrechungen (d. h. eine Super-Störung) am Beispiel des Ausbruchs des Coronavirus (COVID-19/SARS-CoV-2) betrachtet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akkermans, H., & van Wassenhove, L. N. (2018). Supply chain tsunamis: Research on low-probability, high-impact disruptions. Journal of Supply Chain Management, 54(1), 64–76.CrossRef Akkermans, H., & van Wassenhove, L. N. (2018). Supply chain tsunamis: Research on low-probability, high-impact disruptions. Journal of Supply Chain Management, 54(1), 64–76.CrossRef
go back to reference Azadegan, A., Mellat Parast, M., Lucianetti, L., Nishant, R., & Blackhurst, J. (2020). Supply chain disruptions and business continuity: An empirical assessment. Decision Sciences, 51(1), 38–73.CrossRef Azadegan, A., Mellat Parast, M., Lucianetti, L., Nishant, R., & Blackhurst, J. (2020). Supply chain disruptions and business continuity: An empirical assessment. Decision Sciences, 51(1), 38–73.CrossRef
go back to reference Basole, R. C., & Bellamy, M. A. (2014). Supply network structure, visibility, and risk diffusion: A computational approach. Decision Sciences, 45(4), 1–49.CrossRef Basole, R. C., & Bellamy, M. A. (2014). Supply network structure, visibility, and risk diffusion: A computational approach. Decision Sciences, 45(4), 1–49.CrossRef
go back to reference Bier, T., Lange, A., & Glock, C. H. (2020). Methods for mitigating disruptions in complex supply chain structures: A systematic literature review. International Journal of Production Research, 58(6), 1835–1856.CrossRef Bier, T., Lange, A., & Glock, C. H. (2020). Methods for mitigating disruptions in complex supply chain structures: A systematic literature review. International Journal of Production Research, 58(6), 1835–1856.CrossRef
go back to reference Bode, C., & Macdonald, J. R. (2017). Stages of supply chain disruption response: Direct, constraining, and mediating factors for impact mitigation. Decision Sciences, 48(5), 836–874.CrossRef Bode, C., & Macdonald, J. R. (2017). Stages of supply chain disruption response: Direct, constraining, and mediating factors for impact mitigation. Decision Sciences, 48(5), 836–874.CrossRef
go back to reference Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A contingent resource-based perspective of supply chain resilience and robustness. Journal of Supply Chain Management, 50(3), 55–73.CrossRef Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A contingent resource-based perspective of supply chain resilience and robustness. Journal of Supply Chain Management, 50(3), 55–73.CrossRef
go back to reference Cao, S., Bryceson, K., & Hine, D. (2019). An Ontology-based Bayesian network modelling for supply chain risk propagation. Industrial Management and Data Systems, 119(8), 1691–1711.CrossRef Cao, S., Bryceson, K., & Hine, D. (2019). An Ontology-based Bayesian network modelling for supply chain risk propagation. Industrial Management and Data Systems, 119(8), 1691–1711.CrossRef
go back to reference Chatfield, D. C., Hayya, J. C., & Cook, D. P. (2013). Stockout propagation and amplification in supply chain inventory systems. International Journal of Production Research, 51(5), 1491–1507.CrossRef Chatfield, D. C., Hayya, J. C., & Cook, D. P. (2013). Stockout propagation and amplification in supply chain inventory systems. International Journal of Production Research, 51(5), 1491–1507.CrossRef
go back to reference Chaudhuri, A., Srivastava, S. K., Srivastava, R. K., & Parveen, Z. (2016). Risk propagation and its impact on performance in food processing supply chain: A fuzzy interpretive structural modeling based approach. Journal of Modelling in Management, 11(2), 660–693.CrossRef Chaudhuri, A., Srivastava, S. K., Srivastava, R. K., & Parveen, Z. (2016). Risk propagation and its impact on performance in food processing supply chain: A fuzzy interpretive structural modeling based approach. Journal of Modelling in Management, 11(2), 660–693.CrossRef
go back to reference Chen, H. Y., Das, A., & Ivanov, D. (2019). Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry. International Journal of Information Management, 49, 330–342.CrossRef Chen, H. Y., Das, A., & Ivanov, D. (2019). Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry. International Journal of Information Management, 49, 330–342.CrossRef
go back to reference Choi, T.-M. (2020). Risk analysis in logistics systems: A research agenda during and after the COVID-19 pandemic. Transportation Research Part E: Logistics and Transportation, 140, 101961.CrossRef Choi, T.-M. (2020). Risk analysis in logistics systems: A research agenda during and after the COVID-19 pandemic. Transportation Research Part E: Logistics and Transportation, 140, 101961.CrossRef
go back to reference Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT Sloan Management Review, 46, 52–61. Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT Sloan Management Review, 46, 52–61.
go back to reference Chopra, S., & Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions. MIT Sloan Management Review, 55(3), 73–80. Chopra, S., & Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions. MIT Sloan Management Review, 55(3), 73–80.
go back to reference Chopra, S., Reinhardt, G., & Mohan, U. (2007). The importance of decoupling recurrent and disruption risks in a supply chain. Naval Research Logistics, 54(5), 44–555.CrossRef Chopra, S., Reinhardt, G., & Mohan, U. (2007). The importance of decoupling recurrent and disruption risks in a supply chain. Naval Research Logistics, 54(5), 44–555.CrossRef
go back to reference Christopher, M. (2011). Logistics & supply chain management (4. Aufl.). Financial Times Prentice Hall. Christopher, M. (2011). Logistics & supply chain management (4. Aufl.). Financial Times Prentice Hall.
go back to reference Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B. (2007). The severity of supply chain disruptions: Design characteristics and mitigation capabilities. Decision Sciences, 38(1), 131–156.CrossRef Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B. (2007). The severity of supply chain disruptions: Design characteristics and mitigation capabilities. Decision Sciences, 38(1), 131–156.CrossRef
go back to reference Demirel, G., MacCarthy, B. L., Ritterskamp, D., Champneys, A., & Gross, T. (2019). Identifying dynamical instabilities in supply networks using generalized modeling. Journal of Operations Management, 65(2), 133–159.CrossRef Demirel, G., MacCarthy, B. L., Ritterskamp, D., Champneys, A., & Gross, T. (2019). Identifying dynamical instabilities in supply networks using generalized modeling. Journal of Operations Management, 65(2), 133–159.CrossRef
go back to reference Disney, S. M., & Towill, D. R. (2002). A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain. International Journal of Production Research, 40, 179–204.CrossRef Disney, S. M., & Towill, D. R. (2002). A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain. International Journal of Production Research, 40, 179–204.CrossRef
go back to reference Dolgui, A., & Ivanov, D. (2020). Exploring supply chain structural dynamics: New disruptive technologies and disruption risks. International Journal of Production Economics, 229, 107886.CrossRef Dolgui, A., & Ivanov, D. (2020). Exploring supply chain structural dynamics: New disruptive technologies and disruption risks. International Journal of Production Economics, 229, 107886.CrossRef
go back to reference Dolgui, A., & Ivanov, D. (2021). Ripple effect and supply chain disruption management: New trends and research directions. International Journal of Production Research, 59(1), 102–109.CrossRef Dolgui, A., & Ivanov, D. (2021). Ripple effect and supply chain disruption management: New trends and research directions. International Journal of Production Research, 59(1), 102–109.CrossRef
go back to reference Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: An analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430.CrossRef Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: An analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430.CrossRef
go back to reference Dolgui, A., Ivanov, D., & Rozhkov, M. (2020). Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. International Journal of Production Research, 58(5), 1285–1301.CrossRef Dolgui, A., Ivanov, D., & Rozhkov, M. (2020). Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. International Journal of Production Research, 58(5), 1285–1301.CrossRef
go back to reference Duong, L. N. K., & Chong, J. (2020). Supply chain collaboration in the presence of disruptions: A literature review. International Journal of Production Research, 58(11), 3488–3507.CrossRef Duong, L. N. K., & Chong, J. (2020). Supply chain collaboration in the presence of disruptions: A literature review. International Journal of Production Research, 58(11), 3488–3507.CrossRef
go back to reference El Baz, J., & Ruel, S. (2021). Can supply chain risk management practices mitigate the disruption im-pacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2020.107972 El Baz, J., & Ruel, S. (2021). Can supply chain risk management practices mitigate the disruption im-pacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era. International Journal of Production Economics. https://​doi.​org/​10.​1016/​j.​ijpe.​2020.​107972
go back to reference Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research., 247(1), 1–15.CrossRef Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research., 247(1), 1–15.CrossRef
go back to reference Fiksel, J., Polyviou, M., Croxton, K. L., & Pettit, T. J. (2015). From risk to resilience: Learning to deal with disruption. MIT Sloan Management Review, 56(2), 79–86. Fiksel, J., Polyviou, M., Croxton, K. L., & Pettit, T. J. (2015). From risk to resilience: Learning to deal with disruption. MIT Sloan Management Review, 56(2), 79–86.
go back to reference Garvey, M. D., Carnovale, S., & Yeniyurt, S. (2015). An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research, 243(2), 618–627.CrossRef Garvey, M. D., Carnovale, S., & Yeniyurt, S. (2015). An analytical framework for supply network risk propagation: A Bayesian network approach. European Journal of Operational Research, 243(2), 618–627.CrossRef
go back to reference Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2013). A systems thinking approach for modelling supply chain risk propagation. Supply Chain Management: An International Journal, 18(5), 523–538.CrossRef Ghadge, A., Dani, S., Chester, M., & Kalawsky, R. (2013). A systems thinking approach for modelling supply chain risk propagation. Supply Chain Management: An International Journal, 18(5), 523–538.CrossRef
go back to reference Ghadge, A., Weiß, M., Caldwell, N. D., & Wilding, R. (2019). Managing cyber risk in supply chains: A review and research agenda. Supply Chain Management: An International Journal, 25(2), 223–240.CrossRef Ghadge, A., Weiß, M., Caldwell, N. D., & Wilding, R. (2019). Managing cyber risk in supply chains: A review and research agenda. Supply Chain Management: An International Journal, 25(2), 223–240.CrossRef
go back to reference Gholami-Zanjani, S. M., Klibi, W., Jabalameli, M. S., & Pishvaee, M. S. (2020). A robust location-inventory model for food supply chains operating under disruptions with ripple effects. International Journal of Production Research. in press. Gholami-Zanjani, S. M., Klibi, W., Jabalameli, M. S., & Pishvaee, M. S. (2020). A robust location-inventory model for food supply chains operating under disruptions with ripple effects. International Journal of Production Research. in press.
go back to reference Gianesello, P., Ivanov, D., & Battini, D. (2017). Closed-loop supply chain simulation with disruption considerations: A case-study on Tesla. International Journal of Inventory Research, 4(4), 257–280.CrossRef Gianesello, P., Ivanov, D., & Battini, D. (2017). Closed-loop supply chain simulation with disruption considerations: A case-study on Tesla. International Journal of Inventory Research, 4(4), 257–280.CrossRef
go back to reference Goldbeck, N., Angeloudis, P., & Ochieng, W. (2020). Optimal supply chain resilience with consideration of failure propagation and repair logistics. Transportation Research: Part E, 133, 101830.CrossRef Goldbeck, N., Angeloudis, P., & Ochieng, W. (2020). Optimal supply chain resilience with consideration of failure propagation and repair logistics. Transportation Research: Part E, 133, 101830.CrossRef
go back to reference Gupta, S., Starr, M., Zanjirani Farahani, R., & Matinrad, N. (2016). Disaster management from a POM perspective: Mapping a new domain. Production and Operations Management, 25(10), 1611–1637.CrossRef Gupta, S., Starr, M., Zanjirani Farahani, R., & Matinrad, N. (2016). Disaster management from a POM perspective: Mapping a new domain. Production and Operations Management, 25(10), 1611–1637.CrossRef
go back to reference Gupta, V., & Ivanov, D. (2020). Dual sourcing under supply disruption with risk-averse suppliers in the sharing economy. International Journal of Production Research, 58(1), 291–307.CrossRef Gupta, V., & Ivanov, D. (2020). Dual sourcing under supply disruption with risk-averse suppliers in the sharing economy. International Journal of Production Research, 58(1), 291–307.CrossRef
go back to reference Gupta, V., Ivanov, D., & Choi, T.-M. (2021). Competitive pricing of substitute products under supply disruption. Omega, 101, 102279.CrossRef Gupta, V., Ivanov, D., & Choi, T.-M. (2021). Competitive pricing of substitute products under supply disruption. Omega, 101, 102279.CrossRef
go back to reference Gurnani, H., Mehrotra, A., & Ray, S. (2012). Supply chain disruptions: Theory and practice of managing risk. Springer.CrossRef Gurnani, H., Mehrotra, A., & Ray, S. (2012). Supply chain disruptions: Theory and practice of managing risk. Springer.CrossRef
go back to reference He, J., Alavifard, F., Ivanov, D., & Jahani, H. (2019). A real-option approach to mitigate disruption risk in the supply chain. Omega: The International Journal of Management Science, 88, 133–149.CrossRef He, J., Alavifard, F., Ivanov, D., & Jahani, H. (2019). A real-option approach to mitigate disruption risk in the supply chain. Omega: The International Journal of Management Science, 88, 133–149.CrossRef
go back to reference Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53(16), 5031–5069.CrossRef Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53(16), 5031–5069.CrossRef
go back to reference Hosseini, S., Ivanov, D., & Dolgui, A. (2019a). Ripple effect modeling of supplier disruption: Integrated Markov Chain and Dynamic Bayesian Network Approach. International Journal of Production Research. in press. Hosseini, S., Ivanov, D., & Dolgui, A. (2019a). Ripple effect modeling of supplier disruption: Integrated Markov Chain and Dynamic Bayesian Network Approach. International Journal of Production Research. in press.
go back to reference Hosseini, S., Ivanov, D., & Dolgui, A. (2019b). Review of quantitative methods for supply chain resilience analysis. Transportation Research: Part E, 125, 285–307.CrossRef Hosseini, S., Ivanov, D., & Dolgui, A. (2019b). Review of quantitative methods for supply chain resilience analysis. Transportation Research: Part E, 125, 285–307.CrossRef
go back to reference Ivanov, D. (2018a). Structural dynamics and resilience in supply chain risk management. Springer.CrossRef Ivanov, D. (2018a). Structural dynamics and resilience in supply chain risk management. Springer.CrossRef
go back to reference Ivanov, D. (2018b). Revealing interfaces of supply chain resilience and sustainability: A simulation study. International Journal of Production Research, 56(10), 3507–3523.CrossRef Ivanov, D. (2018b). Revealing interfaces of supply chain resilience and sustainability: A simulation study. International Journal of Production Research, 56(10), 3507–3523.CrossRef
go back to reference Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers and Industrial Engineering, 127, 558–570.CrossRef Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers and Industrial Engineering, 127, 558–570.CrossRef
go back to reference Ivanov, D. (2020a). “A blessing in disguise” or “as if it wasn’t hard enough already”: Reciprocal and aggravate vulnerabilities in the supply chain. International Journal of Production Research, 58(11), 3252–3262.CrossRef Ivanov, D. (2020a). “A blessing in disguise” or “as if it wasn’t hard enough already”: Reciprocal and aggravate vulnerabilities in the supply chain. International Journal of Production Research, 58(11), 3252–3262.CrossRef
go back to reference Ivanov, D. (2021a). Lean resilience: AURA (active usage of resilience assets) framework for post-COVID-19 supply chain management. International Journal of Logistics Management, forthcoming. Ivanov, D. (2021a). Lean resilience: AURA (active usage of resilience assets) framework for post-COVID-19 supply chain management. International Journal of Logistics Management, forthcoming.
go back to reference Ivanov, D., & Das, A. (2020). Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: A research note. International Journal of Integrated Supply Management, 13(1), 90–102.CrossRef Ivanov, D., & Das, A. (2020). Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: A research note. International Journal of Integrated Supply Management, 13(1), 90–102.CrossRef
go back to reference Ivanov, D., & Dolgui, A. (2019). Low-Certainty-Need (LCN) supply chains: A new perspective in managing disruption risks and resilience. International Journal of Production Research, 57(15–16), 5119–5136.CrossRef Ivanov, D., & Dolgui, A. (2019). Low-Certainty-Need (LCN) supply chains: A new perspective in managing disruption risks and resilience. International Journal of Production Research, 57(15–16), 5119–5136.CrossRef
go back to reference Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904–2915.CrossRef Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904–2915.CrossRef
go back to reference Ivanov, D., & Dolgui, A. (2021). OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. International Journal of Production Economics, 232, 107921.CrossRef Ivanov, D., & Dolgui, A. (2021). OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. International Journal of Production Economics, 232, 107921.CrossRef
go back to reference Ivanov, D., & Rozhkov, M. (2020). Coordination of production and ordering policies under capacity disruption and product write-off risk: An analytical study with real-data based simulations of a fast moving consumer goods company. Annals of Operations Research, 291(1–2), 387–407.CrossRef Ivanov, D., & Rozhkov, M. (2020). Coordination of production and ordering policies under capacity disruption and product write-off risk: An analytical study with real-data based simulations of a fast moving consumer goods company. Annals of Operations Research, 291(1–2), 387–407.CrossRef
go back to reference Ivanov, D., & Sokolov, B. (2010). Adaptive supply chain management. Springer.CrossRef Ivanov, D., & Sokolov, B. (2010). Adaptive supply chain management. Springer.CrossRef
go back to reference Ivanov, D., & Sokolov, B. (2013). Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis, and adaptation of performance under uncertainty. European Journal of Operational Research, 224(2), 313–323.CrossRef Ivanov, D., & Sokolov, B. (2013). Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis, and adaptation of performance under uncertainty. European Journal of Operational Research, 224(2), 313–323.CrossRef
go back to reference Ivanov, D., & Sokolov, B. (2020). Simultaneous structural-operational control of supply chain dynamics and resilience. Annals of Operations Research, 283(1), 1191–1210. Ivanov, D., & Sokolov, B. (2020). Simultaneous structural-operational control of supply chain dynamics and resilience. Annals of Operations Research, 283(1), 1191–1210.
go back to reference Ivanov, D., Sokolov, B., & Pavlov, A. (2014a). Optimal distribution (re)planning in a centralized multi-stage network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758–770.CrossRef Ivanov, D., Sokolov, B., & Pavlov, A. (2014a). Optimal distribution (re)planning in a centralized multi-stage network under conditions of the ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758–770.CrossRef
go back to reference Ivanov, D., Sokolov, B., & Dolgui, A. (2014b). The ripple effect in supply chains: Trade-off ‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production Research, 52(7), 2154–2172.CrossRef Ivanov, D., Sokolov, B., & Dolgui, A. (2014b). The ripple effect in supply chains: Trade-off ‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production Research, 52(7), 2154–2172.CrossRef
go back to reference Ivanov, D., Pavlov, A., Pavlov, D., & Sokolov, B. (2017a). Minimization of disruption-related return flows in the supply chain. International Journal of Production Economics, 183, 503–513.CrossRef Ivanov, D., Pavlov, A., Pavlov, D., & Sokolov, B. (2017a). Minimization of disruption-related return flows in the supply chain. International Journal of Production Economics, 183, 503–513.CrossRef
go back to reference Ivanov, D., Dolgui, A., Sokolov, B., & Ivanova, M. (2017b). Literature review on disruption recovery in the supply chain. International Journal of Production Research, 55(20), 6158–6174.CrossRef Ivanov, D., Dolgui, A., Sokolov, B., & Ivanova, M. (2017b). Literature review on disruption recovery in the supply chain. International Journal of Production Research, 55(20), 6158–6174.CrossRef
go back to reference Ivanov, D., Dolgui, A., & Sokolov, B. (2019a). The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.CrossRef Ivanov, D., Dolgui, A., & Sokolov, B. (2019a). The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.CrossRef
go back to reference Ivanov, D., Dolgui, A., & Sokolov, B. (Hrsg.). (2019b). Handbook of ripple effects in the supply chain. Springer. Ivanov, D., Dolgui, A., & Sokolov, B. (Hrsg.). (2019b). Handbook of ripple effects in the supply chain. Springer.
go back to reference Ivanov, D., Tsipoulanidis, A., & Schönberger, J. (2021). Global supply chain and operations management: A decision-oriented introduction into the creation of value (3. Aufl.). Springer Nature.CrossRef Ivanov, D., Tsipoulanidis, A., & Schönberger, J. (2021). Global supply chain and operations management: A decision-oriented introduction into the creation of value (3. Aufl.). Springer Nature.CrossRef
go back to reference Kinra, A., Ivanov, D., Das, A., & Dolgui, A. (2020). Ripple effect quantification by supply risk exposure assessment. International Journal of Production Research, 58(19), 5559–5578.CrossRef Kinra, A., Ivanov, D., Das, A., & Dolgui, A. (2020). Ripple effect quantification by supply risk exposure assessment. International Journal of Production Research, 58(19), 5559–5578.CrossRef
go back to reference Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: A critical review. European Journal of Operational Research, 203(2), 283–293.CrossRef Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: A critical review. European Journal of Operational Research, 203(2), 283–293.CrossRef
go back to reference Knight, F. (1921). Risk, uncertainty and profit: Hart, Schaffner and Marx Prize Essays 31. Houghton Mifflin. Knight, F. (1921). Risk, uncertainty and profit: Hart, Schaffner and Marx Prize Essays 31. Houghton Mifflin.
go back to reference Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546–558.CrossRef Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546–558.CrossRef
go back to reference Li, Y., & Zobel, C. W. (2020). Exploring supply chain network resilience in the presence of the ripple effect. International Journal of Production Economics, 228, 107693.CrossRef Li, Y., & Zobel, C. W. (2020). Exploring supply chain network resilience in the presence of the ripple effect. International Journal of Production Economics, 228, 107693.CrossRef
go back to reference Li, Y., Zobel, C. W., Seref, O., & Chatfield, D. C. (2020). Network characteristics and supply chain resilience under conditions of risk propagation. International Journal of Production Economics, 223, 107529.CrossRef Li, Y., Zobel, C. W., Seref, O., & Chatfield, D. C. (2020). Network characteristics and supply chain resilience under conditions of risk propagation. International Journal of Production Economics, 223, 107529.CrossRef
go back to reference Li, Y., Chen, K., Collignon, S., & Ivanov, D. (2021). Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability. European Journal of Operational Research, 291(3), 1117–1131.CrossRef Li, Y., Chen, K., Collignon, S., & Ivanov, D. (2021). Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability. European Journal of Operational Research, 291(3), 1117–1131.CrossRef
go back to reference Liberatore, F., Scaparra, M. P., & Daskin, M. S. (2012). Hedging against disruptions with ripple effects in location analysis. Omega, 40, 21–30.CrossRef Liberatore, F., Scaparra, M. P., & Daskin, M. S. (2012). Hedging against disruptions with ripple effects in location analysis. Omega, 40, 21–30.CrossRef
go back to reference Linkov, I., & Kott, A. (2019). Fundamental concepts of cyber resilience: Introduction and overview. In A. Kott & I. Linkov (Hrsg.), Cyber resilience of systems and networks (S. 1–25). Springer. Linkov, I., & Kott, A. (2019). Fundamental concepts of cyber resilience: Introduction and overview. In A. Kott & I. Linkov (Hrsg.), Cyber resilience of systems and networks (S. 1–25). Springer.
go back to reference Macdonald, J. R., Zobel, C. W., Melnyk, S. A., & Griffis, S. E. (2018). Supply chain risk and resilience: Theory building through structured experiments and simulation. International Journal of Production Research, 56(12), 4337–4355.CrossRef Macdonald, J. R., Zobel, C. W., Melnyk, S. A., & Griffis, S. E. (2018). Supply chain risk and resilience: Theory building through structured experiments and simulation. International Journal of Production Research, 56(12), 4337–4355.CrossRef
go back to reference March, J. G., & Shapira, Z. (1987). Managerial perspectives on risk and risk taking. Management Science, 33, 1404–1418.CrossRef March, J. G., & Shapira, Z. (1987). Managerial perspectives on risk and risk taking. Management Science, 33, 1404–1418.CrossRef
go back to reference Markowitz, H. (1952). Portfolio selection. The Journal of Finance, VII(1), 77–91. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, VII(1), 77–91.
go back to reference Marsh, P., Brown, K., Anderlini, J., Johnston, T., Waldmeir, P., Jung, S., Rickards, J., Weitzman, H., & Ward, A. (2011) Japan crisis impact on the supply chain: Global industries consider their options. Financial Times Europe, No. 37568 17 March, 16. Marsh, P., Brown, K., Anderlini, J., Johnston, T., Waldmeir, P., Jung, S., Rickards, J., Weitzman, H., & Ward, A. (2011) Japan crisis impact on the supply chain: Global industries consider their options. Financial Times Europe, No. 37568 17 March, 16.
go back to reference Moetz, A., Stylos-Duesmann, P., & Otto, B. (2019). Schedule instability in automotive production networks: The development of a network-oriented resequencing method. Proceedings of the 9th IFAC conference on manufacturing modelling, management and control (MIM 2019), edited by Dmitry Ivanov, Alexandre Dolgui, Farouk Yalaoui. IFAC-PapersOnLine, 52(13), 2810–2815.CrossRef Moetz, A., Stylos-Duesmann, P., & Otto, B. (2019). Schedule instability in automotive production networks: The development of a network-oriented resequencing method. Proceedings of the 9th IFAC conference on manufacturing modelling, management and control (MIM 2019), edited by Dmitry Ivanov, Alexandre Dolgui, Farouk Yalaoui. IFAC-PapersOnLine, 52(13), 2810–2815.CrossRef
go back to reference Nair, A., & Vidal, J. M. (2011). Supply network topology and robustness against disruptions: An investigation using multiagent model. International Journal of Production Research, 49(5), 1391–1404.CrossRef Nair, A., & Vidal, J. M. (2011). Supply network topology and robustness against disruptions: An investigation using multiagent model. International Journal of Production Research, 49(5), 1391–1404.CrossRef
go back to reference Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Wamba, S. F. (2017). The role of big data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142(2), 1108–1118.CrossRef Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Wamba, S. F. (2017). The role of big data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142(2), 1108–1118.CrossRef
go back to reference Paul, S., Sarker, R., Essam, D., & Lee, P. T.-W. (2019). Managing sudden disturbances in a three-tier manufacturing supply chain: A mathematical modelling approach. Annals of Operations Research, 280, 299–335.CrossRef Paul, S., Sarker, R., Essam, D., & Lee, P. T.-W. (2019). Managing sudden disturbances in a three-tier manufacturing supply chain: A mathematical modelling approach. Annals of Operations Research, 280, 299–335.CrossRef
go back to reference Paul, S. K., & Chowdhury, P. (2021). A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. International Journal of Physical Distribution & Logistics Management, 51(2), 104–125.CrossRef Paul, S. K., & Chowdhury, P. (2021). A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. International Journal of Physical Distribution & Logistics Management, 51(2), 104–125.CrossRef
go back to reference Paul, S. K., Sarker, R., & Essam, D. (2017). A quantitative model for disruption mitigation in a supply chain. European Journal of Operational Research, 257(3), 881–895.CrossRef Paul, S. K., Sarker, R., & Essam, D. (2017). A quantitative model for disruption mitigation in a supply chain. European Journal of Operational Research, 257(3), 881–895.CrossRef
go back to reference Pavlov, A., Ivanov, D., Pavlov, D., & Slinko, A. (2019). Optimization of network redundancy and contingency planning in sustainable and resilient supply chain resource management under conditions of structural dynamics. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03182-6 Pavlov, A., Ivanov, D., Pavlov, D., & Slinko, A. (2019). Optimization of network redundancy and contingency planning in sustainable and resilient supply chain resource management under conditions of structural dynamics. Annals of Operations Research. https://​doi.​org/​10.​1007/​s10479-019-03182-6
go back to reference Peck, H. (2005). Drivers of supply chain vulnerability: An integrated framework. International Journal of Physical Distribution & Logistics Management, 35(4), 210–232.CrossRef Peck, H. (2005). Drivers of supply chain vulnerability: An integrated framework. International Journal of Physical Distribution & Logistics Management, 35(4), 210–232.CrossRef
go back to reference Pettit, J. T., Fiksel, J., & Croxton, L. K. (2010). Ensuring supply chain resilience: Development of a conceptual framework. Journal of Business Logistics, 31(1), 1–21.CrossRef Pettit, J. T., Fiksel, J., & Croxton, L. K. (2010). Ensuring supply chain resilience: Development of a conceptual framework. Journal of Business Logistics, 31(1), 1–21.CrossRef
go back to reference Ponomarov, S., & Holcomb, M. (2009). Understanding the concept of supply chain resilience. International Journal of Logistics Management, 20(1), 124–143. Ponomarov, S., & Holcomb, M. (2009). Understanding the concept of supply chain resilience. International Journal of Logistics Management, 20(1), 124–143.
go back to reference Pournader, M., Kach, A., & Talluri, S. (2020). A review of the existing and emerging topics in supply chain risk management literature. Decision Sciences, 51(4), 867–919.CrossRef Pournader, M., Kach, A., & Talluri, S. (2020). A review of the existing and emerging topics in supply chain risk management literature. Decision Sciences, 51(4), 867–919.CrossRef
go back to reference Quang, H. T., & Hara, Y. (2017). Risks and performance in supply chain: The push effect. International Journal of Production Research, 56, 1369.CrossRef Quang, H. T., & Hara, Y. (2017). Risks and performance in supply chain: The push effect. International Journal of Production Research, 56, 1369.CrossRef
go back to reference Rao, S., & Goldsby, T. J. (2009). Supply chain risks: A review and typology. The International Journal of Logistics Management, 20(1), 97–123.CrossRef Rao, S., & Goldsby, T. J. (2009). Supply chain risks: A review and typology. The International Journal of Logistics Management, 20(1), 97–123.CrossRef
go back to reference Rosenhead, J., Elton, M., & Gupta, S. K. (1972). Robustness and optimality as criteria for strategic decisions. Operational Research Quarterly, 23(4), 413–431.CrossRef Rosenhead, J., Elton, M., & Gupta, S. K. (1972). Robustness and optimality as criteria for strategic decisions. Operational Research Quarterly, 23(4), 413–431.CrossRef
go back to reference Saghafian, S., & Van Oyen, M. P. (2016). Compensating for dynamic supply disruptions: Backup flexibility design. Operations Research, 64(2), 390–405.CrossRef Saghafian, S., & Van Oyen, M. P. (2016). Compensating for dynamic supply disruptions: Backup flexibility design. Operations Research, 64(2), 390–405.CrossRef
go back to reference Sahebjamnia, N., Torabi, S. A., & Mansouri, S. A. (2015). Integrated business continuity and disaster recovery planning: Toward organizational resilience. European Journal of Operational Research, 242(1), 261–273.CrossRef Sahebjamnia, N., Torabi, S. A., & Mansouri, S. A. (2015). Integrated business continuity and disaster recovery planning: Toward organizational resilience. European Journal of Operational Research, 242(1), 261–273.CrossRef
go back to reference Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: A systemic risk and normal accident theory perspective. International Journal of Production Research, 56(1–2), 43–59.CrossRef Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: A systemic risk and normal accident theory perspective. International Journal of Production Research, 56(1–2), 43–59.CrossRef
go back to reference Shen, B., & Li, Q. (2017). Market disruptions in supply chains: A review of operational models. International Transactions Inoperational Research, 24, 697–711.CrossRef Shen, B., & Li, Q. (2017). Market disruptions in supply chains: A review of operational models. International Transactions Inoperational Research, 24, 697–711.CrossRef
go back to reference Simchi-Levi, D., Schmidt, W., Wei, Y., Zhang, P. Y., Combs, K., Ge, Y., Gusikhin, O., Sander, M., & Zhang, D. (2015). Identifying risks and mitigating disruptions in the automotive supply chain. Interfaces, 45(5), 375–390.CrossRef Simchi-Levi, D., Schmidt, W., Wei, Y., Zhang, P. Y., Combs, K., Ge, Y., Gusikhin, O., Sander, M., & Zhang, D. (2015). Identifying risks and mitigating disruptions in the automotive supply chain. Interfaces, 45(5), 375–390.CrossRef
go back to reference Simchi-Levi, D., Wang, H., & Wei, Y. (2018). Increasing supply chain robustness through process flexibility and inventory. Production and Operations Management, 27(8), 1491–1496.CrossRef Simchi-Levi, D., Wang, H., & Wei, Y. (2018). Increasing supply chain robustness through process flexibility and inventory. Production and Operations Management, 27(8), 1491–1496.CrossRef
go back to reference Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: A review. IIE Transactions, 48(2), 89–109.CrossRef Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: A review. IIE Transactions, 48(2), 89–109.CrossRef
go back to reference Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2016). Structural quantification of the ripple effect in the supply chain. International Journal of Production Research, 54(1), 152–169.CrossRef Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2016). Structural quantification of the ripple effect in the supply chain. International Journal of Production Research, 54(1), 152–169.CrossRef
go back to reference Tan, W. J., Zhang, A. N., & Cai, W. (2019). A graph-based model to measure structural redundancy for supply chain resilience. International Journal of Production Research, 57(20), 6385–6404.CrossRef Tan, W. J., Zhang, A. N., & Cai, W. (2019). A graph-based model to measure structural redundancy for supply chain resilience. International Journal of Production Research, 57(20), 6385–6404.CrossRef
go back to reference Tang, C. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.CrossRef Tang, C. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.CrossRef
go back to reference Tang, L., Jing, K., He, J., & Stanley, H. E. (2016). Complex interdependent supply chain networks: Cascading failure and robustness. Physica A, 443, 58–69.CrossRef Tang, L., Jing, K., He, J., & Stanley, H. E. (2016). Complex interdependent supply chain networks: Cascading failure and robustness. Physica A, 443, 58–69.CrossRef
go back to reference Tang, O., & Musa, S. N. (2011). Identifying risk issues and research advancements in supply chain risk management. International Journal of Production Economics, 133, 25–34.CrossRef Tang, O., & Musa, S. N. (2011). Identifying risk issues and research advancements in supply chain risk management. International Journal of Production Economics, 133, 25–34.CrossRef
go back to reference Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52, 639–657.CrossRef Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52, 639–657.CrossRef
go back to reference Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research – Part E, 79, 22–48.CrossRef Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research – Part E, 79, 22–48.CrossRef
go back to reference Van der Vegt, G., Essens, P., Wahlstrom, M., & George, G. (2015). Managing risk and resilience. Academy of Management Journal, 58(4), 971–980.CrossRef Van der Vegt, G., Essens, P., Wahlstrom, M., & George, G. (2015). Managing risk and resilience. Academy of Management Journal, 58(4), 971–980.CrossRef
go back to reference Waters, D. (2011). Supply chain risk management: Vulnerability and resilience in logistics (2. Aufl.). Kohan Page. Waters, D. (2011). Supply chain risk management: Vulnerability and resilience in logistics (2. Aufl.). Kohan Page.
go back to reference Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International Journal of Production Economics, 114(2), 646–655.CrossRef Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International Journal of Production Economics, 114(2), 646–655.CrossRef
go back to reference Xu, S., Zhang, X., Feng, L., & Yang, W. (2020). Disruption risks in supply chain management: A literature review based on bibliometric analysis. International Journal of Production Research, 58(11), 3508–3526.CrossRef Xu, S., Zhang, X., Feng, L., & Yang, W. (2020). Disruption risks in supply chain management: A literature review based on bibliometric analysis. International Journal of Production Research, 58(11), 3508–3526.CrossRef
go back to reference Yan, T., Choi, T. Y., Kim, Y., & Yang, Y. (2015). A theory of the nexus supplier: A critical supplier from a network perspective. Journal of Supply Chain Management, 51(1), 52–66.CrossRef Yan, T., Choi, T. Y., Kim, Y., & Yang, Y. (2015). A theory of the nexus supplier: A critical supplier from a network perspective. Journal of Supply Chain Management, 51(1), 52–66.CrossRef
go back to reference Yang, Z., Aydin, G., Babich, V., & Beil, D. R. (2009). Supply disruptions, asymmetric information, and a backup production option. Management Science, 55(2), 192–120.CrossRef Yang, Z., Aydin, G., Babich, V., & Beil, D. R. (2009). Supply disruptions, asymmetric information, and a backup production option. Management Science, 55(2), 192–120.CrossRef
go back to reference Yao, Y., & Fabbe-Costas, N. (2018). Can you measure resilience if you are unable to define it? The analysis of Supply Network Resilience (SNRES). Supply Chain Forum: An International Journal, 19(4), 255–265.CrossRef Yao, Y., & Fabbe-Costas, N. (2018). Can you measure resilience if you are unable to define it? The analysis of Supply Network Resilience (SNRES). Supply Chain Forum: An International Journal, 19(4), 255–265.CrossRef
go back to reference Yoon, J., Talluri, S., Yildiz, H., & Ho, W. (2018). Models for supplier selection and risk mitigation: A holistic approach. International Journal of Production Research, 56(10), 3636–3661.CrossRef Yoon, J., Talluri, S., Yildiz, H., & Ho, W. (2018). Models for supplier selection and risk mitigation: A holistic approach. International Journal of Production Research, 56(10), 3636–3661.CrossRef
go back to reference Zhao, K., Zuo, Z., & Blackhurst, J. V. (2019). Modelling supply chain adaptation for disruptions: An empirically grounded complex adaptive systems approach. Journal of Operations Management, 65(2), 190–212.CrossRef Zhao, K., Zuo, Z., & Blackhurst, J. V. (2019). Modelling supply chain adaptation for disruptions: An empirically grounded complex adaptive systems approach. Journal of Operations Management, 65(2), 190–212.CrossRef
Metadata
Title
Risiken, Störungen und der Ripple-Effekt in Lieferketten
Author
Dmitry Ivanov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-25186-3_1

Premium Partner