Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Cellulose 18/2021

27-10-2021 | Original Research

RISM-assisted analysis of role of alkali metal hydroxides in the solvation of cellulose in alkali/urea aqueous solutions

Authors: Eugene Huh, Ji-Hyun Yang, Chang-Ha Lee, Ik-Sung Ahn, Byung Jin Mhin

Published in: Cellulose | Issue 18/2021

Login to get access
share
SHARE

Abstract

The three-dimensional reference interaction site model theory with the Kovalenko–Hirata closure (3D-RISM–KH) combined with the Kirkwood–Buff integral (KBI) was used to clarify the role of alkali metal hydroxides (MOHs) in cellulose solvation in alkali/urea aqueous solutions. Pair distribution functions, KBI, and the excess number of MOHs showed that M+ hydrates were formed close to cellulose and that their distance was the same as the distance between M+ ions and water molecules in the hydrates. The most stable Li+ hydrate due to the highest Li+ charge density was the closest to the cellulose resulting in the most electrostatic interaction and possibly hydrogen bonding with the cellulose. However, K+ had the lowest charge density, formed the least stable hydrate, and had the least interaction with the cellulose. Hence, the direct solvation energy, which is part of the cellulose solvation energy and accounts for the solute–solvent interaction, was the most negative in the LiOH/urea solution. The solvent reorganization energy—which is another part of the cellulose solvation energy and arises from the clustering of urea, water, and MOH (i.e., ion hydrates) around cellulose—was the most negative in the LiOH/urea solution because of the highest probability and the closest positioning of the Li+ hydrate to the cellulose. Therefore, the calculation results obtained using 3D-RISM–KH and KBI explained the difference among the cellulose solubilities in the LiOH/urea, NaOH/urea, and KOH/urea aqueous solutions.

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Appendix
Available only for authorised users
Literature
go back to reference Ben-Naim A (1978) Standard thermodynamics of transfer. Uses misuses. J Phys Chem 82:792–803 CrossRef Ben-Naim A (1978) Standard thermodynamics of transfer. Uses misuses. J Phys Chem 82:792–803 CrossRef
go back to reference Bialik E, Stenqvist B, Fang Y, Östlund Å, Furo I, Lindman BR, Lund M, Bernin D (2016) Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett 7:5044–5048 CrossRef Bialik E, Stenqvist B, Fang Y, Östlund Å, Furo I, Lindman BR, Lund M, Bernin D (2016) Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett 7:5044–5048 CrossRef
go back to reference Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous. Solut Macromol Biosci 5:539–548 CrossRef Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous. Solut Macromol Biosci 5:539–548 CrossRef
go back to reference Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Comm 25:1558–1562 CrossRef Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Comm 25:1558–1562 CrossRef
go back to reference Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351 CrossRef Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351 CrossRef
go back to reference Case D, Betz R, Cerutti D, Cheatham T, Darden T, Duke R AMBER16, 2016 San Francisco Case D, Betz R, Cerutti D, Cheatham T, Darden T, Duke R AMBER16, 2016 San Francisco
go back to reference Chalikian TV, Breslauer KJ (1996) On volume changes accompanying conformational transitions. Biopolymers 39:619–626 CrossRef Chalikian TV, Breslauer KJ (1996) On volume changes accompanying conformational transitions. Biopolymers 39:619–626 CrossRef
go back to reference Chen CR, Makhatadze GI (2015) ProteinVolume: calculating molecular van der Waals and void volumes in proteins. BMC Bioinf 16:1–6 CrossRef Chen CR, Makhatadze GI (2015) ProteinVolume: calculating molecular van der Waals and void volumes in proteins. BMC Bioinf 16:1–6 CrossRef
go back to reference Edward JT, Farrell PG (1975) Relation between van der Waals and partial molar volumes of organic molecules in water. Can J Chem 53:2965–2970 CrossRef Edward JT, Farrell PG (1975) Relation between van der Waals and partial molar volumes of organic molecules in water. Can J Chem 53:2965–2970 CrossRef
go back to reference Gallicchio E, Kubo M, Levy RM (2000) Enthalpy – entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation. J Phys Chem B 104:6271–6285 CrossRef Gallicchio E, Kubo M, Levy RM (2000) Enthalpy – entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation. J Phys Chem B 104:6271–6285 CrossRef
go back to reference Giambaşu GM, Gebala MK, Panteva MT, Luchko T, Case DA, York DM (2015) Competitive interaction of monovalent cations with DNA from 3D-RISM. Nucleic Acids Res 43:8405–8415 CrossRef Giambaşu GM, Gebala MK, Panteva MT, Luchko T, Case DA, York DM (2015) Competitive interaction of monovalent cations with DNA from 3D-RISM. Nucleic Acids Res 43:8405–8415 CrossRef
go back to reference Giambaşu GM, Luchko T, Herschlag D, York DM, Case DA (2014) Ion counting from explicit-solvent simulations and 3D-RISM. Biophys J 106:883–894 CrossRef Giambaşu GM, Luchko T, Herschlag D, York DM, Case DA (2014) Ion counting from explicit-solvent simulations and 3D-RISM. Biophys J 106:883–894 CrossRef
go back to reference Gomes TC, Skaf MS (2012) Cellulose-Builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346 CrossRef Gomes TC, Skaf MS (2012) Cellulose-Builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346 CrossRef
go back to reference Gusarov S, Pujari BS, Kovalenko A (2012) Efficient treatment of solvation shells in 3D molecular theory of solvation. J Comput Chem 33:1478–1494 CrossRef Gusarov S, Pujari BS, Kovalenko A (2012) Efficient treatment of solvation shells in 3D molecular theory of solvation. J Comput Chem 33:1478–1494 CrossRef
go back to reference Huh E, Yang J-H, Lee C-H, Ahn I-S, Mhin BJ (2020) Thermodynamic analysis of cellulose complex in NaOH–urea solution using reference interaction site model. Cellulose 27:6767–6775 CrossRef Huh E, Yang J-H, Lee C-H, Ahn I-S, Mhin BJ (2020) Thermodynamic analysis of cellulose complex in NaOH–urea solution using reference interaction site model. Cellulose 27:6767–6775 CrossRef
go back to reference Imai T (2007a) Molecular theory of partial molar volume and its applications to biomolecular systems. Condens Matter Phys 10:343–361 CrossRef Imai T (2007a) Molecular theory of partial molar volume and its applications to biomolecular systems. Condens Matter Phys 10:343–361 CrossRef
go back to reference Imai T, Ohyama S, Kovalenko A, Hirata F (2007b) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16:1927–1933 CrossRef Imai T, Ohyama S, Kovalenko A, Hirata F (2007b) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16:1927–1933 CrossRef
go back to reference Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1‐BCC model: I. Method. J Comput Chem 21:132–146 CrossRef Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1‐BCC model: I. Method. J Comput Chem 21:132–146 CrossRef
go back to reference Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1‐BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641 CrossRef Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1‐BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641 CrossRef
go back to reference Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose–NaOH–urea aqueous system. J Phys Chem B 118:10250–10257 CrossRef Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose–NaOH–urea aqueous system. J Phys Chem B 118:10250–10257 CrossRef
go back to reference Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd Res 342:851–858 CrossRef Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd Res 342:851–858 CrossRef
go back to reference Kovalenko A (2013) Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. Pure Appl Chem 85:159–199 CrossRef Kovalenko A (2013) Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. Pure Appl Chem 85:159–199 CrossRef
go back to reference Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer: Heidelberg, pp 95–139 Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer: Heidelberg, pp 95–139
go back to reference Kovalenko A, Gusarov S (2018) Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics. Phys Chem Phys 20:2947–2969 CrossRef Kovalenko A, Gusarov S (2018) Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics. Phys Chem Phys 20:2947–2969 CrossRef
go back to reference Krüger P, Schnell SK, Bedeaux D, Kjelstrup S, Vlugt TJ, Simon J-M (2013) Kirkwood–Buff integrals for finite volumes. J Phys Chem Lett 4:235–238 CrossRef Krüger P, Schnell SK, Bedeaux D, Kjelstrup S, Vlugt TJ, Simon J-M (2013) Kirkwood–Buff integrals for finite volumes. J Phys Chem Lett 4:235–238 CrossRef
go back to reference Lazaridis T (2000) Solvent reorganization energy and entropy in hydrophobic hydration. J Phys Chem B 104:4964–4979 CrossRef Lazaridis T (2000) Solvent reorganization energy and entropy in hydrophobic hydration. J Phys Chem B 104:4964–4979 CrossRef
go back to reference Lee B (1983) Partial molar volume from the hard-sphere mixture model. J Phys Chem 87:112–118 CrossRef Lee B (1983) Partial molar volume from the hard-sphere mixture model. J Phys Chem 87:112–118 CrossRef
go back to reference Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40 CrossRef Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40 CrossRef
go back to reference Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms   Adv Coll Interface Sci 222:502–508 CrossRef Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms   Adv Coll Interface Sci 222:502–508 CrossRef
go back to reference Misin M (2017) Can approximate integral equation theories accurately predict solvation thermodynamics? Ph.D. thesis, University of Strathclyde Misin M (2017) Can approximate integral equation theories accurately predict solvation thermodynamics? Ph.D. thesis, University of Strathclyde
go back to reference Misin M, Vainikka PA, Fedorov MV, Palmer DS (2016) Salting-out effects by pressure-corrected 3D-RISM. J Chem Phys 145:194501 CrossRef Misin M, Vainikka PA, Fedorov MV, Palmer DS (2016) Salting-out effects by pressure-corrected 3D-RISM. J Chem Phys 145:194501 CrossRef
go back to reference Nicol TW, Isobe N, Clark JH, Shimizu S (2017) Statistical thermodynamics unveils the dissolution mechanism of cellobiose. Phys Chem Chem Phys 19:23106–23112 CrossRef Nicol TW, Isobe N, Clark JH, Shimizu S (2017) Statistical thermodynamics unveils the dissolution mechanism of cellobiose. Phys Chem Chem Phys 19:23106–23112 CrossRef
go back to reference Patel N, Dubins DN, Pomes R, Chalikian TV (2011) Parsing partial molar volumes of small molecules: a molecular dynamics study. J Chem Phys B 115:4856–4862 CrossRef Patel N, Dubins DN, Pomes R, Chalikian TV (2011) Parsing partial molar volumes of small molecules: a molecular dynamics study. J Chem Phys B 115:4856–4862 CrossRef
go back to reference Sergiievskyi VP, Jeanmairet G, Levesque M, Borgis D (2014) Fast computation of solvation free energies with molecular density functional theory: Thermodynamic-ensemble partial molar volume corrections. J Phys Chem Lett 5:1935–1942 CrossRef Sergiievskyi VP, Jeanmairet G, Levesque M, Borgis D (2014) Fast computation of solvation free energies with molecular density functional theory: Thermodynamic-ensemble partial molar volume corrections. J Phys Chem Lett 5:1935–1942 CrossRef
go back to reference Shimizu S (2004) Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Natl Acad Sci USA 101:1195–1199 CrossRef Shimizu S (2004) Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Natl Acad Sci USA 101:1195–1199 CrossRef
go back to reference Shimizu S, Booth JJ, Abbott S (2013) Hydrotropy: binding models vs. statistical thermodynamics. Phys Chem Chem Phys 15:20625–20632 CrossRef Shimizu S, Booth JJ, Abbott S (2013) Hydrotropy: binding models vs. statistical thermodynamics. Phys Chem Chem Phys 15:20625–20632 CrossRef
go back to reference Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L (2017a) Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Phys Chem Chem Phys 19:7486–7490 CrossRef Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L (2017a) Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Phys Chem Chem Phys 19:7486–7490 CrossRef
go back to reference Wang S, Lyu K, Sun P, Lu A, Liu M, Zhuang L, Zhang L (2017b) Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose 24:4641–4651 CrossRef Wang S, Lyu K, Sun P, Lu A, Liu M, Zhuang L, Zhang L (2017b) Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose 24:4641–4651 CrossRef
go back to reference Wang S, Sun P, Liu M, Lu A, Zhang L (2017c) Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Phys Chem Chem Phys 19:17909–17917 CrossRef Wang S, Sun P, Liu M, Lu A, Zhang L (2017c) Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Phys Chem Chem Phys 19:17909–17917 CrossRef
go back to reference Wernersson E, Stenqvist B, Lund M (2015) The mechanism of cellulose solubilization by urea studied by molecular simulation. Cellulose 22:991–1001 CrossRef Wernersson E, Stenqvist B, Lund M (2015) The mechanism of cellulose solubilization by urea studied by molecular simulation. Cellulose 22:991–1001 CrossRef
go back to reference Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621 CrossRef Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621 CrossRef
Metadata
Title
RISM-assisted analysis of role of alkali metal hydroxides in the solvation of cellulose in alkali/urea aqueous solutions
Authors
Eugene Huh
Ji-Hyun Yang
Chang-Ha Lee
Ik-Sung Ahn
Byung Jin Mhin
Publication date
27-10-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 18/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04214-w