Skip to main content
Top

2024 | OriginalPaper | Chapter

RMODCNN: A Novel Plant Disease Prediction Framework

Authors : Vineeta Singh, Vandana Dixit Kaushik, Alok Kumar, Deepak Kumar Verma

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The detection of plant diseases is essential for avoiding reductions in agricultural product production and quantity. Visually observable patterns on the plant are the main focus of plant disease research. Monitoring plant health and spotting diseases is crucial for sustainable agriculture. Monitoring plant diseases manually is very difficult. It necessitates a lot of labor, expertise in plant diseases and prolonged processing. In the presented research, a ratal mellifera based DCNN model is developed for plant disease prediction. At first, the data is acquired out of a plant leaf input dataset, further, it involves pre-processing for removing noise. In the next step, the Region-of-Interest (ROI) extraction strategy is utilized for separating the relevant regions to process further process out of the unessential pixels. Further extracted ROI outcome will be imposed to the process of data augmentation; further GAN-based approach has been utilized for data augmentation for data enhancement for enhancing the accuracy of prediction. Further feature extraction has been accompanied for extracting features involving RESNET 101, LTP and LOOP as well as statistical features. Ratal mellifera optimization is derived out of two optimization strategies namely ratal optimization along with mellifera bee optimization, that is utilized for optimizing the channel boosted deep CNN network. Taking into consideration the TP and k-fold, the performance key indicators accuracy (acc) and sensitivity (sen) for TP for tea leaf prediction and for apple leaf prediction have demonstrated better outcomes in contrast to recent state-of-the-Art has been gained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmed, I., Yadav, P.K.: Plant disease detection using machine learning approaches. Expert. Syst. 40(5), e13136 (2023)CrossRef Ahmed, I., Yadav, P.K.: Plant disease detection using machine learning approaches. Expert. Syst. 40(5), e13136 (2023)CrossRef
3.
go back to reference Bhatia, A., Chug, A., Singh, A.P., Singh, D.: Fractional mega trend diffusion function-based feature extraction for plant disease prediction. Int. J. Mach. Learn. Cybern. 14(1), 187–212 (2023)CrossRef Bhatia, A., Chug, A., Singh, A.P., Singh, D.: Fractional mega trend diffusion function-based feature extraction for plant disease prediction. Int. J. Mach. Learn. Cybern. 14(1), 187–212 (2023)CrossRef
4.
go back to reference Haridasan, A., Thomas, J., Raj, E.D.: Deep learning system for paddy plant disease detection and classification. Environ. Monit. Assess. 195(1), 120 (2023)CrossRef Haridasan, A., Thomas, J., Raj, E.D.: Deep learning system for paddy plant disease detection and classification. Environ. Monit. Assess. 195(1), 120 (2023)CrossRef
5.
go back to reference Joseph, D.S., Pawar, P.M., Pramanik, R.: Intelligent plant disease diagnosis using convolutional neural network: a review. Multimedia Tools Appl. 82(14), 21415–21481 (2023)CrossRef Joseph, D.S., Pawar, P.M., Pramanik, R.: Intelligent plant disease diagnosis using convolutional neural network: a review. Multimedia Tools Appl. 82(14), 21415–21481 (2023)CrossRef
6.
go back to reference Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., Huang, H.: Recent advances in plant disease severity assessment using convolutional neural networks. Sci. Rep. 13(1), 2336 (2023)CrossRef Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., Huang, H.: Recent advances in plant disease severity assessment using convolutional neural networks. Sci. Rep. 13(1), 2336 (2023)CrossRef
7.
go back to reference Pal, A., Kumar, V.: AgriDet: plant leaf disease severity classification using agriculture detection framework. Eng. Appl. Artif. Intell. 119, 105754 (2023)CrossRef Pal, A., Kumar, V.: AgriDet: plant leaf disease severity classification using agriculture detection framework. Eng. Appl. Artif. Intell. 119, 105754 (2023)CrossRef
8.
go back to reference Kondaveeti, H.K., Ujini, K.G., Pavankumar, B.V.V., Tarun, B.S., Gopi, S.C.: Plant disease detection using ensemble learning. In: 2023 2nd International Conference on Computational Systems and Communication (ICCSC), pp. 1–6. IEEE (2023) Kondaveeti, H.K., Ujini, K.G., Pavankumar, B.V.V., Tarun, B.S., Gopi, S.C.: Plant disease detection using ensemble learning. In: 2023 2nd International Conference on Computational Systems and Communication (ICCSC), pp. 1–6. IEEE (2023)
9.
go back to reference Yu, S., Xie, L., Huang, Q.: Inception convolutional vision transformers for plant disease identification. Internet Things 21, 100650 (2023)CrossRef Yu, S., Xie, L., Huang, Q.: Inception convolutional vision transformers for plant disease identification. Internet Things 21, 100650 (2023)CrossRef
10.
go back to reference Lanjewar, M.G., Panchbhai, K.G.: Convolutional neural network based tea leaf disease prediction system on smart phone using paas cloud. Neural Comput. Appl. 35(3), 2755–2771 (2023)CrossRef Lanjewar, M.G., Panchbhai, K.G.: Convolutional neural network based tea leaf disease prediction system on smart phone using paas cloud. Neural Comput. Appl. 35(3), 2755–2771 (2023)CrossRef
11.
go back to reference Lamba, S., Saini, P., Kaur, J., Kukreja, V.: Optimized classification model for plant diseases using generative adversarial networks. Innovat. Syst. Softw. Eng. 19(1), 103–115 (2023)CrossRef Lamba, S., Saini, P., Kaur, J., Kukreja, V.: Optimized classification model for plant diseases using generative adversarial networks. Innovat. Syst. Softw. Eng. 19(1), 103–115 (2023)CrossRef
12.
go back to reference Islam, M.M., Adil, M.A.A., Talukder, M.A., Ahamed, M.K.U., Uddin, M.A., Hasan, M.K., Debnath, S.K.: DeepCrop: deep learning-based crop disease prediction with web application. J. Agricult. Food Res. 100764 (2023) Islam, M.M., Adil, M.A.A., Talukder, M.A., Ahamed, M.K.U., Uddin, M.A., Hasan, M.K., Debnath, S.K.: DeepCrop: deep learning-based crop disease prediction with web application. J. Agricult. Food Res. 100764 (2023)
13.
go back to reference Yang, L.N., Ren, M., Zhan, J.: Modeling plant diseases under climate change: evolutionary perspectives. Trends Plant Sci. (2023) Yang, L.N., Ren, M., Zhan, J.: Modeling plant diseases under climate change: evolutionary perspectives. Trends Plant Sci. (2023)
14.
go back to reference Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Ali, F.: An advanced deep learning models-based plant disease detection: a review of recent research. Front. Plant Sci. 14, 1158933 (2023)CrossRef Shoaib, M., Shah, B., Ei-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Ali, F.: An advanced deep learning models-based plant disease detection: a review of recent research. Front. Plant Sci. 14, 1158933 (2023)CrossRef
15.
go back to reference González-Domínguez, E., Caffi, T., Rossi, V., Salotti, I., Fedele, G.: Plant disease models and forecasting: changes in principles and applications over the last 50 years. Phytopathology®, 113(4), 678–693 (2023) González-Domínguez, E., Caffi, T., Rossi, V., Salotti, I., Fedele, G.: Plant disease models and forecasting: changes in principles and applications over the last 50 years. Phytopathology®, 113(4), 678–693 (2023)
16.
go back to reference Parez, S., Dilshad, N., Alanazi, T.M., Lee, J.W.: Towards sustainable agricultural systems: a lightweight deep learning model for plant disease detection. Comput. Syst. Sci. Eng. 47(1), 515–536 (2023)CrossRef Parez, S., Dilshad, N., Alanazi, T.M., Lee, J.W.: Towards sustainable agricultural systems: a lightweight deep learning model for plant disease detection. Comput. Syst. Sci. Eng. 47(1), 515–536 (2023)CrossRef
17.
go back to reference Smagulova, K., James, A.P.: A survey on LSTM memristive neural network architectures and applications. Europ. Phys. J. Spec. Top. 228(10), 2313–2324 (2019) Smagulova, K., James, A.P.: A survey on LSTM memristive neural network architectures and applications. Europ. Phys. J. Spec. Top. 228(10), 2313–2324 (2019)
18.
go back to reference Fakieh, B., Ragab, M.: Automated COVID-19 classification using heap-based optimization with the deep transfer learning model. Comput. Intell. Neurosci. 2022 (2022) Fakieh, B., Ragab, M.: Automated COVID-19 classification using heap-based optimization with the deep transfer learning model. Comput. Intell. Neurosci. 2022 (2022)
19.
go back to reference Kavitha, R., Jothi, D.K., Saravanan, K., Swain, M.P., Gonzáles, J.L. Bhardwaj, R.J.A., Adomako, E.: Ant colony optimization-enabled CNN deep learning technique for accurate detection of cervical cancer. BioMed Res. Int. 2023 (2023) Kavitha, R., Jothi, D.K., Saravanan, K., Swain, M.P., Gonzáles, J.L. Bhardwaj, R.J.A., Adomako, E.: Ant colony optimization-enabled CNN deep learning technique for accurate detection of cervical cancer. BioMed Res. Int. 2023 (2023)
21.
go back to reference Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.L.: A bee colony optimization algorithm to job shop scheduling. In: Proceedings of the 2006 Winter Simulation Conference, pp. 1954–1961. IEEE (2006) Chong, C.S., Low, M.Y.H., Sivakumar, A.I., Gay, K.L.: A bee colony optimization algorithm to job shop scheduling. In: Proceedings of the 2006 Winter Simulation Conference, pp. 1954–1961. IEEE (2006)
22.
go back to reference Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul 192, 84–110 (2022)MathSciNetCrossRef Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul 192, 84–110 (2022)MathSciNetCrossRef
Metadata
Title
RMODCNN: A Novel Plant Disease Prediction Framework
Authors
Vineeta Singh
Vandana Dixit Kaushik
Alok Kumar
Deepak Kumar Verma
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_45